
PATRICIA --Practical Algorithm To Retrieve Information

Coded in Alphanumeric

DONALD g. MORRISON

Sandia Laboratory,* Albuquerque, New Mexico

ABSTRACT. PATRICIA is an algorithm which provides a flexible means of storing, indexing,
and retrieving information in a large file, which is economical of index space and of reindexing
time. It does not require rearrangement of text or index as new material is added. It requires a
minimum restriction of format of text and of keys; it is extremely flexible in the variety of
keys it will respond to. It retrieves information in response to keys furnished by the user with
a quantity of computation which has a bound which depends linearly on the length of keys
and the number of their proper occurrences and is otherwise independent of the size of the
library. It has been implemented in several variations as FORTRAN programs for the CDC-3600,
utilizing disk file storage of text. It has been applied to several large information-retrieval
problems and will be applied to others.

KEY WORDS AND PHRASES: indexing, information retrieval, keys

CR CATEGORIES : 3.7

1. Context and Purpose

Libraries and files are constructed to store information. Examples include personnel
files, telephone directories, par t lists, dictionaries (scientific or technical), and gen-
eral libraries. The user of a large l ibrary or file approaches the library in search of
information. We call a piece of information sought by a user a target. Typically,
target is a book, a poem, a chapter, an article, a definition, a theorem, a biography,
a part description, an employee's record, or the name, address, and telephone num-
ber of a person, a customer, or a supplier. When he approaches the library in search
of information, the user has in his possession something which we call a key, which,
he hopes, will enable him, or help him, to recognize the target if and when he finds
it. The key is a small piece of the target - - typical ly , the title or a par t of the title,
the author 's name, a prominent line, an important word, a part name or serial
number, a person's name or address or telephone number, or the word whose defini-
tion is sought, or the hypothesis or conclusion of the target theorem.

A user does not want to read the whole library to find a target. Anticipating this
desire, librarians construct indexes, catalogs, and other devices to accelerate the
discovery of targets for which they anticipate tha t keys may be presented. From
the users' point of view, it is desirable that the index be approachable with keys
which are not unduly restricted or artificial in format, and tha t the index itself
not require interminable scanning before it reveals the location of a target. From
the librarian's point of view, it is desirable tha t an index serve the needs of the
users; tha t it be economical of space and of the time of the librarian; that it be

* Computer Science, Division 5256. This work was supported by the US Atomic Energy Com-
mission.

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968, pp. 514-534.

FA TRICIA ~ 515

easily modified to reflect additions to or deletions from the library; and that such
additions or deletions require a minimum of relocation of remaining items in the library
and the index. Ideally, as the library grows, tile quantity of effort required to find
all occurrences of a particular key, or to add a new target and to modify the index
accordingly, should remain bounded. The bound should depend only on the key or
target, and the number of its occurrences in the library and be otherwise independent
of the size of the library.

The requirements outlined above are probably mutually contradictory when
users and librarians are people and the library is coded in an unrestricted variety
of alphabets, languages, and formats. When, however, the users and librarians are
high-speed binary digital computers, and the library is coded in a binary alphabet,
techniques become available which achieve all of the above requirements.

PATRICIA is a system for constructing an index for a binary coded library, for
using the index to retrieve targets for which keys are presented, and for modifying
the index to reflect changes in the library. PATRICIA achieves these objectives
with quantities of memory and computation which appear to be near minimal for
the problem defined. In particular, the index which PATRICIA defines includes
no keys or text, only numbers which designate locations in the text or index. The
amount of computation required to find one occurrence of a key, if there is one,
or to find that there is none, has a bound which depends linearly on the length of the
key and is independent of the size of the library. The quantity of computation re-
quired to find all occurrences of a key after one occurrence has been found depends
linearly on the number of such occurrences and is independent of the size of the
library. The computational effort involved in adding a new item to the library and
adjusting the index to reflect its presence consists of copying the new item into the
text, determining how much of it is already present, as outlined above, adding five
numbers, and changing one in the previously existing index. The keys to which
PATRICIA responds occur in the text, not in the index. They occur, therefore,
only in their natural form, as pieces of the text, and are not restricted in format or
length, except to the extent that the stoarge available for text is so restricted. The
text is likewise unrestricted in format. Items in the text need not be arranged in
any special order, except insofar as semantic continuity requires it; they can be
stored in the order they are received. New additions will not necessitate relocation
of old ones, and items can be of uniform or variable length. Keys and targets need
not be in one-to-one correspondence; one target may be retrievable by as many
keys as the librarian chooses to identify in it, and one key may retrieve as many
targets as it has occurrences so identified.

2. Motivations

The referee and other perceptive readers have reacted to Sections 3-5 with the
thought that there must be other ways to implement PATRICIA--ways which are
less restrictive and easier to understand. There are. Some of them were stages in
the evolution which led to the present version. It may be helpful to the reader to
know some of the reasoIling which led to the present version.

PATRICIA evolved from "A Library Automaton" [3] and other studies. Its
evolution is continuing in the current development of PATRICIA II, an extension
of PATRICIA, which makes better use of external storage of the index. Early in

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

5 1 0 D . R . MORRISON

this evolution it was decided that the alphabet should be restricted to a binary one.
A theorem which strongly influenced this decision is one which, in another form, is
due to Euler. [['he theorem states that if the alphabet is binary, then the number of
branches is exactly one less than the number of ends. Corollaries state that as the
library grows, each new end brings into the library with it exactly one new branch,
and each branch has exactly two exits. These facts are very useful in the allocation
of storage for the index. They imply that the total storage required is completely
determined by the number of ends, and all of the storage required will actually be
used.

If the alphabet is not binary, then none of these results hold. Some new ends
bring with them new branches; others create new exits to old branches. The num-
ber of branches is not predictable from the number of ends, and the number of exits
from branches varies from branch to branch. All of these facts pose dilemmas for
the programmer when he tries to allocate storage for the index. If he allocates
storage for the maximum number of branches possible with a given number of ends,
and for the maximum number of exits for each branch, then much precious fast-
access storage space is unused. If he tries to overcome this difficulty by a threaded
list, or some equally sophisticated scheme, it will still cost him precious fast-access
storage and execution time as well. Another complication arises in the innermost
loops of the algorithms in tha t many instruction sequences which are a single path
in the binary case have branches to cover the several possibilities which arise in the
more general case. This is also costly in fast-access storage.

Experience with PATRICIA and its predecessors on a variety of applications
which are thought to be reasonably typical of those to which it can be applied indi-
cates that the T W I N table, especially that part of it which corresponds to chains
of low height, is accessed with much greater frequency than any other part of
PATRICIA's data base. I t is therefore desirable, in the interest of efficiency, that
all of the T W I N table, or as much as possible of its lower part, be stored in the
fast-access memory. Fast access to the H E I G H T table is only a little less essential,
and to the START table and the T E X T , much less. Many of the choices made in
formulating the present version of PATRICIA were based on the desire to get as
many entries as possible of T W I N and H E I G H T tables into the core. The number
of entries in these tables which can be packed into core determines, more than any
other parameter, the flexibility and efficiency of PATRICIA.

The numbering scheme for ends and branches, which assigns odd numbers to
ends and even numbers to branches, is not essential, but it does have several ad-
vantages over its alternatives. I t is necessary, somehow, to distinguish between
ends and branches. This can be done by storing an explicit Boolean variable or by
making the dichotomy implicit in some feature of the storage, such as the number-
ing of ends and branches. If numbers in one class are to be assigned to ends, and in
another class to branches, then there is some advantage in choosing the two classes
of numbers in such a way that, like the ends and branches, they come naturally in
pairs, consisting of one from each class. Even and odd positive integers have that
property. So do positive and negative integers. Even and odd positive integers are
preferred to posit ive and negative integers, because they can be packed and un-
packed more easily, several to a word, if that should be necessary to conserve core
storage space, and because they can be utilized more readily as addresses and as
indexes in arrays.

Journal. of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

PA TRfCfA 517

The START table is all indirect addressing scheme, linking the odd-numbered
chains with the text. The indirect scheme was preferred to direct addressing for the
following reasons. Since the text is much larger and more heterogeneous than the
index, the text addresses range over a nmeh wider spectrum than tile chain num-
bers, and each one requires more storage space. What is more, the text will prob-
ably be stored externally, and the format of text addresses will be dictated by the
external hardware. By utilizing the START table as a link between the TWIN
table and the text, the problems of internal file management for the TWIN table
and external file management for the text become almost completely independent.
They intersect only in the relatively simple matter of designing the START table
and instructions for reading and writing in it.

The updating algorithm, ADD p, may seem unduly complicated. The most
difficult part of ADD p's task is that of finding where to branch from. Once that is
accomplished, the process of actually modifying the text and index is trivial. I t would
be conceptually easier to find where to branch from by scanning the index. This
would, however, destroy PATRICIA's greatest asset: its ability to update a grow-
ing library in a number of computational steps which does not grow linearly with
the length of the previously accumulated index. To retain this advantage, ADD p
utilizes H N D O N E , a scheme which is moderately hard to understand, but far
more efficient in execution than any scanning technique, when the index is large.
FINDONE looks at branches only, ignoring intervening nonbranehes until the end
of its search, at which time it checks all of these simultaneously. If FINDONE
looked at each branch and nonbraneh in order, then it would be intermittently
looking at text and index. If, as is assumed, the index is readily accessible, and the
text is less so, then the scheme which takes only one final look at the text is much
more efficient.

In summary, the choices which were made in formulating the present version of
PATRICIA represent the author's estimate of the best compromise among the
desiderata of simplicity, lucidity, and efficiency, in the environment of existing
hardware and anticipated applications. In that environment, text is stored ill slow-
access memory and as much as possible of the index in fast-access memory.

3. START, STOP, END, L-PHRASE, BRANCH, TWIN, and CHAIN

These seven words form the basic vocabulary of PATRICIA, and each is used here
with a highly specialized meaning. To emphasize the specialized meaning, these
words are set in capitals throughout this section (only). For examples of the terms
here defined, see Figure 1. The TEXT of a RIGHT LIBRARY 1 is a finite sequence
of bits (binary symbols); the binary symbols are here denoted by A and B. 2 The
symbol ~ denotes the null phrase or phrase of length zero. Each position in the
TEXT is identified by a number called its address and is occupied by an A or a B.
Text addresses are consecutive positive integers, increasing as the text is read from
left to right.

Certain text addresses are designated as STARTs and others as STOPs. These

It is so called because i t is r ead f rom lef t ~o r igh t .
A and B are p re fe r red to t h e more c o n v e n t i o n a l 0 a n d 1, because n u m e r a l s appea r in the in-

dex and it is des i rab le to m a i n t a i n a d i s t i n c t i o n be tween s y m b o l s which a p p e a r in t he t ex t
and numera l s wh ich a p p e a r in the index.

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

518 D.R. MOR~ZS0.~

TEXT
I IA 2 3 4. 5 6 7 8 9 i0 i i , , 12 13 14. 15

B B 'A B A B B"B A 'B A B B " A"

CHAIN 1 2,3 4,5 TWIN 1 2 3 4. 5 6 7
START 1 4 9 11 I [CHAIN 4. 3 1 2 6 5 ?

LENCiTH I HEIGHT ,NDEX 71
End (1)(Book) O~AIN_ i 2 3 4-_5 6 T

8 ABBABABB I_EE[GHT 8 2 5 0 7 3
7 AIBABAB End (.5)(Book) '~ BAB~BBA

6 ABBABA BABABB
I End (3)

B A BI'A B

4 ABBA ABAB BABTA BABB
T [Twin(6) Twin(7)

¢----Br an c h(6)_fi"
3 ABB ABA BAB

Twin(3) Twin(2)
e-Branch 2 ~r T

2 AB BA

, A T
Twin(4.)*--Branch(4.) ~ T w i n (5)

_F~ T w i n (l) ¢
1 2 3 4. 5 6 7

CHAIN NUMBER

Fie. 1. Representations of a r ight l ibrary

designations need not be marked in the TEXT itself; they are noted by recording
the designated addresses in the index. A START occurs at the beginning of each
occurrence of a key, which, in the librarian's judgment, should be pointed out to
users who enter with that key. Such an occurrence is called a PROPER OCCUR-
RENCE. The librarian's judgment is iraplemented as a subroutine, FINDSTART,
upon which the main program, PATRICIA, calls to build an index. Typically, a
START is indicated at the beginning of each item of information likely to be a
target, that is, each book, paragraph, personnel record, etc. At the librarian's dis-
cretion, a START may also be designated at selected places interior to each likely
target--at the beginning of a name, an address, a telephone number, a prominent
word, or any part of the target likely to be used as a key to the target. If the li-
brarian so directs, a START may be designated at the beginning of every word. The
quantity of storage and computation required to construct the index is roughly
proportional to the number of places in the text which are designated by the li-
brarian as STARTs.

In the example of Figure 1, for the guidance of the reader, a START is marked
by a single opening quotation mark: '

A STOP is a place in the text which is at the right end of an item which is likely
to be a target--a place which separates material to its right from unrelated material
to its left. I t corresponds roughly to what is called, in conventional terminology, an
end of record or end of book. In Figure 1, a STOP is indicated by a single closing
quotation mark: '.

PATRICIA seeks only PROPER OCCURRENCEs of phrases, tha t is, occur-
rences which begin at a START and end not later than the next STOP. Any phrase
which has at least one PROPER OCCURRENCE is called an L-PHRASE. The

J'ournal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

pATRICIA 519

set of all L-t t LASEs is e~dled L, or the LIBRARY. An L-PHRASE which begins
at a START ~md erlds at the next STOP is called an END. Every left part of an END
is an L-PHRASE, and conversely, every L-PHRASE is a left part of at least one
END. The L-PHRASEs in Figure 1 are the phrases to which upward arrows (T)
point. The listing of L-PHRASEs is shown in Figure 1 only to assist the reader in
identifying alld classifying L-PHRASEs. No such listing appears in the computer
memory. Only the TEXT and the START, TWIN, and HEIGHT indexes appear
in the computer memory.

RULE 1. Each END has exactly one PROPER OCCURRENCE in the
TEXT, beginning at one and only one START and ending at the next STOP.

Rule 1 does not restrict or limit in any way the kind of information which can be
stored; it can be complied with in any one of several simple ways. These are de-
scribed in Sections 8 and 9.

An END is a BOOK if the START at which it begins is leftmost among the
STARTs corresponding to its stop; that is, it is not a right part of another END.
In the example shown in Figure 1, ABBABABB, ABABB, BABABBA, and BABBA
are ENDs; but only ABBABABB and BABABBA are BOOKs, because the other
two ENDs are right parts of these. Every END is a right part of at least one
BOOK.

If p is any L-PHRASE, then pA and pB are called minimal right extensions of p.
Either, or both, or neither of pA and pB may be in L. If neither is in L, then p
is an END. If both pA and pB are in L, then p is a BRANCH in L. This happens
when pA is a left part of one END, and pB is a left part of another END. In the
example of Figure 1, BAB is a BRANCH because its two minimal right extensions
BABA and BABB are both left parts of ENDs: BABA is a left part of the END
BABABBA, and BABB is a left part of the END BABBA. Similarly, AB and ft
are BRANCHes in L; their minimal right extensions ABA, ABB, A and B are all
in L.

If p is a BRANCH in L, then its two minimal right extensions are each called a
TWIN in L. In Figure 1, (A,B), (ABA,ABB), and (BABA,BABB) are TWIN
L-phrases because ft, AB, and BAB are BRANCHes. For reasons to appear, ~ is
also classed as a TWIN, although it is not an extension of a BRANCH.

It is useful to group L-phrases into CHAINs whose members have PROPER
OCCURRENCEs beginning at the same STARTs. Clearly, two L-PHRASEs are
so related if one is the only right extension of its length of the other in L.

Each CHAIN has a unique shortest member, which is a TWIN, and a unique
longest member, which is an END or ~ BRANCH. Conversely, each TWIN is the
shortest member of its CHAIN, and each END or BRANCH is the longest member
of its CHAIN. Each CHAIN consists of those L-PHRASEs, and only those, which
are left parts of the longest member and right extensions of the shortest member.
In the example of Figure 1, the sequence A, AB is a CHAIN. Its shortest member
is the TWIN A; its longest member is the BRANCH AB; and the members of the
CHAIN have occurrences beginning at the STARTs located in the text at addresses
1 and 4. The TWIN extension ABA of AB is the shortest member of another
CHAIN, consisting of ABA, ABAB, and ABABB. The longest member of this
CHAIN is the END ABABB. Members of this CHAIN have occurrences in the
TEXT beginning only at, the START located at text address4.

The reader will note the similarity in the structure of the index to Fredkin's [1]

Journal of ttle Association for Computing Machinery, VoL 15~ No. 4, October 1968

520 D.R. MORRISoN

Trie Structure. PATRICIA's index differs from Fredkin's Binary Trie structure in
that the index records only true branches; where a phrase has only one proper right
extension, it is not recorded in the index. This fact reduces the number of index
rows to only twice the number of starts, and makes it independent of the length of
the stored phrases.

4. Numbering of Starts, Ends, Branches, Chains, and Twins; Coordinates o] L-
Phrases

Since the index to be constructed by PATRICIA will include only numbers and no
L-phrases, it is necessary to devise a system of coordinates for L-phrases so that
they can be referred to by their coordinates, and so that one can deduce from the
coordinates of a phrase, and from data stored in the index, what the phrase is, where
its occurrences are in the text, and what the coordinates of its right extensions in L
are. Such a system.of coordinates is described in this section. Each L-phrase p will
have two coordinates: a chain coordinate c(p), which it shares with all the members
of its chain, and a length coordinate l(p), which denotes the length of p. Since no
two members of a chain have the same length, the coordinate pair (c(p), l(p))
serves uniquely to identify the L-phrase p.

The foundation of the coordinate system is an assignment of positive odd integers
to starts. This assignment is arbitrary; it can be made by any rule the librarian or
the programmer cares to use. Usually it will be made by assigning successive odd
numbers to the starts as they are encountered in the text as it is scanned from left
to right. This method of assignment is not necessary, however. If the librarian
would prefer, as an afterthought, to designate as starts some text addresses not so
designated on a first pass through the text and to assign to these, odd numbers
larger than those previously assigned to starts further to the right, that is permitted.

In the example in Figure 1, the assignment is as follows:

START(l) = 1

START(3) = 4

START(5) = 9

START(7) = 11

This assignment is recorded in the part of the index labeled "START INDEX".
To assign numbers to ends, it is necessary only to note that ends and starts are

in one-to-one correspondence, each end corresponding to the unique start at whi&
an occurrence of it begins. (Recall that Rule 1 requires that each end begin at one
and only one start.) The odd number assigned to an end is the same as the odd
nmnber assigned to the corresponding start. Thus, in the example of Figure 1:

E N D (l) = ABBABABB

END(3) = ABABB

END(5) = BABABBA

END(7) = BABBA

The odd number assigned to an end e will also serve as the mlmber of the chain
and the chain coordinate c(p) of the L-phrases in the chain of which e is the longest

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

P A T R I C I A 521

member. Thus, for example, e(ABA) = c(ABAB) = c(ABABB) = 3, since
ABABB END(3) a~d ABA, ABAB are all members of the same chain, ABABB
being the l(mgesl~ member. We now need a systematic way to assign nulnbers to
branches a~d thus to the chains of which they are the longest members. To do this
,we need the followi~g definition.

] he S.[tLs I of an end, END(n) (where n is an odd number greater D 4 n i t i o n . ~ ' ~ " " i N

than 1), is tim longest lef"c part of END(n), which is also a left part of END(j) for
some odd number j, less than n.

In the example,

STEM (END (3)) = AB

STEM(END(5)) = f~

StEM(END(7)) = BAB

because AB is the longest left part of END(3), which is also a left part of END(i) ;
is the longest left part of END(5), which is also a left part of END(l) or END(3);

and BAB is the longest left part of END(7), which is also a left part of END(i) ,
END(3), or END(o).

it cart be shown that every [)ranch is the stem of one and only one end and that
the stem of every end except END(I) is a branch. I t follows that if we define branch
numbers, as follows, for each end number n greater than 1,

BRANCH(n - 1) = STEM(END(n)),

then even numbers are assigned in one-to-one fashion to the branches. In the example
this rule assigns numbers to branches as follows:

BRANCH(2) = STEM(END(3)) = AB

BRANCH(4) = S T E M (E N D (5)) = t2

BRANCH(6) = S T E M (E N D (7)) = BAB

The even number assigned to a branch is also assigned to the chain and as a chain
coordinate to all the members of the chain of which the branch is the longest mem-
ber. Thus, for example, c(A) = c(AB) = 2. Since AB = BRANCH(2), A and AB
are in the same chain and AB is the longest member of that chain.

Since every chain has either a branch or an end as its longest member, and singe
we have assigned numbers to every end and every branch, we have assigned chain
numbers to every chain and chain coordinates to every L-phrase. Moreover, because
of the manner of assignment, we can deduce several useful relations among chain
coordinates of phrases and the start numbers at which occurrences of those phrases
in the text begin. Specifically,

(1) If an L-phrase p has an odd chain number, n, then there is one and only one
start, namely START(n), at which a proper occurrence of p in the text begins.

(2) I f art L-phrase q has an even chain number m, then there are at least two
i starts at which proper occurrences of q begin. One such start is START(m -f- 1).

There is at least one other at START(j) for some odd mlmber j , less than m.
Since the phrases in a chain with an even chain number and in the chain with the

next larger odd chain number have a common start, the START INDEX lists one
I Start for each such pair of chains. In the example, the phrases in CHAIN(l) have a

i Jou,'r~at of the Associ~ttion for Computiag Machinery, Vol. 15, No. 4, October 19fi8

522 D. R. MORRISON

common start at START(l) = 1; the phrases in CHAIN(2) and CHAIN(3) have
a common start at START(3) = 4; the phrases in CHAIN(4) and CHAIN(5)
have a common start at START(5) = 9; and the phrases in CHAIN(6) and CHAIN
(7) have a common start at START(7) = 11. Note also that the starts listed above
are the only starts for the phrases with odd chain numbers, but are not the only
starts for the phrases with even chain numbers.

Our next requirement is a systematic way of numbering twins. Since each branch
has an even branch number and has two twin minimal right extensions, it seems
natural to assign twin numbers as follows. For each even branch number n, we
denote:

TWIN(n) = (BRANCH(n))A

TWIN(n + 1) = (BRANCH(n))B

Since this assigns numbers to all twins but ~] and uses all the branch and end numbers
but 1, it seems natural, furthermore, to denote:

WWlN(l i =

Since every twin is either the right extension by A or B of a branch, or is tl, we
have now assigned twin numbers to all twins, and the numbers assigned to twins
are the same numbers as those assigned to chains. I t is not, however, true, in general,
that the twin number assigned to a twin is the same as its chain coordinate. Thus
we need in the index a table, which we call the TWIN INDEX, which specifies for
each twin number the corresponding chain coordinate. In the example of Figure 1,
TWINS 1, 2, 3, 4, 5, 6, and 7, respectively, have chain coordinates 4, 3, 1, 2, 6, 5,
and 7, respectively. Since each chain includes one and only one twin (its shortest
member), and the twin numbers and chain coordinates range over the same set of
integers, the TWIN I N D E X tabulates a permutation on its set of arguments. This
permutation is called TC, the TWIN-TO-CHAIN coordinate transformation. In the
example of Figure 1, we would say that TC(1) = 4, TC(2) = 3, TC(3) = 1, etc.;
in general, TWIN(i) is in CHAIN(TC(i)).

The height, HEIGHT(n) of CHAIN(n), is the length of the longest member of
CHAIN(n). The third and final component of the index of L is the HEIGHT
INDEX, in which is tabulated HEIGHT(n) for each chain coordinate n.

This completes the description of the text and index which describe a library L.
In the sections which follow, algorithms are described which operate on the text and
index thus far described to retrieve targets characterized by specified keys and to
modify the text and index to reflect changes in L.

5. F I N D O N E and F I N D A L L

In this section two basic algorithms which perform tasks essential to PATRICIA's
performance are described. The algorithms and their functions are:

(1) FINDONE, which operates on selected bits of a phrase p and on the twin
and height indexes of L to produce a succession of pairs (t, c) which are the
twin numbers and chain numbers, respectively, of the twin left parts of p in
increasing order of length, if p is in L. In this case, the last c generated by
FINDONE is the chain number of p, and START (c) is a start at which one

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

PATRICIA 523

| (T~blo loo~p i~ | 1
| T~/IN INDEX) | [Is (HEIGHT (c)+l)th
t l L blt °f pA °r B?

X " 2_-L o° V

NO - - o IYes' c Is odd

i
I EXIT 1. If" p is in L, [EXIT 2. Error.
[then p is in CHAIN (c).] p is not In L.

FIG. 2. Flowchart for FINDONE

proper occurrence of p begins. If c is odd, then there are no other proper
occurrences of p in L. If c is even, there are others. If p has no proper oc-
currence in L, then the longest phrase p' in CHAIN(c) shares with p a com-
mon left part, q, which is the longest left part of p in L.

(2) FINDALL operates on an even chain coordinate c(p) of a phrase which has
more than one proper occurrence in L and on the TWIN INDEX of L to
produce a sequence of odd chain coordinates, cl ,c~ , . . . ,c=, which are the chain
coordinates of all ends which are right extensions of p, in alphabetical order.
The starts, START(ci), are the beginnings of all proper occurrences in L of p.

Flowcharts for F INDONE and FINDALL are shown in Figures 2 and 3. Some ex-
planatory notes follow.

FINDONE begins by setting t = 1, that is, by noting that TWIN(l) = ~ is
the shortest twin left part of p.

Next, it looks up in the TWIN INDEX the chain coordinate, c = TC(t) of
TWIN(t). Assume, for the moment, that p is in the library. Later we examine the
consequences of F INDONE if p is not in L. Given that TWIN(t) in CHAIN(c) is a
left part of p, there are two possibilities: either (1) p is in CHAIN(c), or (2) p is a
right extension of the longest phrase, BRANCH(c) in CHAIN(c). F INDONE
chooses between these two possibilities by comparing HEIGHT(c) (the length of
BRANCH(c) or END(c), the longest phrase in CHAIN(c)) with I(p) (the length
of p), and by testing the parity of c. If HEIGHT(c) >- l(p), then (1) holds and
FINDONE exits at EXIT 1. If HEIGHT(c) < l(p), and c is odd, then FINDONE
senses a contradiction, for p is not in CHAIN(c); and the longest phrase in
CHAIN(c) is END (c), ~,hich has no right extensions in L. The contradiction implies
that p is not in L, so I, INDONE exists at EXIT 2. If HEIGHT(c) < l(p) and c is
even, then F I N D O N E concludes that (2) holds; p is an extension of BRANCH(c).

The next objective is to decide which of the twin extensions, TWIN(c) and
TWIN(c + 1) of BRANCH(c), is a left part of p. Since they differ only in their last
(HEIGHT(c) + 1)-th letter, tiffs decision is made by testing the (HEIGHT(c) -t-
1)-th hit of p. If it is an A, then TWIN(c) = (BRANCH(c))A is the selected twin;

Jouz'nal of the A~sociation for Computing Machinery~ Vol. 15, No. 4, October 1968

524 D . R . MORRISON

BEGIN. c(p) is an even chain coordinate. The STACK is empty.

i

c is --

~+t 1
in top
STACK

Yes No
-)

Loop Loop

c=~ (c) F
Table looku~
in TWIN
INDEX) ~ .

I c is odd. I

......

Output c as an odd chain
coordinate of an end which
is a right extension of p.

Is the STACK empty?

~ No Yes

Take c from the
top of the STACK.

EXIT. All chain coordinates of ends which
are right extensions of p have been listed
as output. The STACK is empty.

FIG. 3. Flowchart for F I N D A L L

if B, then TWIN(c + 1) = (BRANCH(c))B is selected. In either case the TWIN
number, c or c + 1 of the selected twin, is the new value of t, the twin number of
the next longer twin left par t of p.

This completes the induction and initiates a new execution of the loop.
Consider, now, what happens if p is not in L. Then p has a longest left part, q,

which is in L.
Consider two cases; q is an end, or q is not an end.
I f q is an end, then F I N D O N E exits at E X I T 2 on discovering tha t HEIGHT

(c) = l(q) < l(p) and c is odd. In this event q is the longest left part of p which is
in L and c = c(q).

I f q is not an end, then we know that q has two minimal right extensions , qx ~nd
qy (where x = A, y = B, or vice versa), and qx is in L and is not a left part of p,
while qy is not in L and is a left part of p. In this case, one of the chain coordinates
encountered by F I N D O N E will be c(q) = c(qx). The members of CHAIN(c) which
are longer than q and also the members of any other chains whose coordinates ~rc
later encountered by F I N D O N E are all right extensions of qx, hence of q, but are
not left parts of p, since qx is not a left par t of p. In particular, the longest member,

Journal of tho Association for Computing Machinery', Vol. 15, No. 4, October 1968

PA TRICIA 525

p', of the last chain whose coordinate is encountered by F I N D O N E shares with p
the left part q, which is the longest left part of p in L.

F I N D A L L makes use of a STACK. A STACK is a sequence of memory locations
into which numbers are placed and from which numbers are taken in such a way
that the last number in is the first out. The numbers which F I N D A L L stacks are
the odd twin numbers, corresponding to twins whose last letter is B, which are twin
extensions of p, the phrase whose chain coordinate, c(p), is the input to F INDALL.

F J N D A L L begins with an even chain coordinate c(p). I t finds a sequence of chain
coordinates c, some even and some odd, all chain numbers of chains whose members
arc e×tensions of p. Where c is even, F I N D A L L forms two twin numbers, c and
e ÷ 1. t t "stacks" c + 1, the twin number of (BRANCtt(c))B, for later processing
and converts c, the twin number of (BRANCH(c))A, to a chain number by use of
the T W I N INDEX. Where c is odd, F I N D A L L outputs c as the chain number of an
end right extension of p.

F I N D A L L has two loops: a left loop in which it processes even chain numbers
and ~ right loop in which it processes odd ones. Each execution of the left loop puts
one ~mmber into the stack, and each execution of the right loop takes one number
o~lt. Since F I N D A L L begins and ends with an empty stack, the two loops are
executed the same number of times in each execution of F INDALL.

Since F I N D A L L processes each even twin number before its odd twin, it examines
the A extension of each branch before the B extension. Thus, it examines the end
extensions of p in alphabetical order.

Since F I N D A L L outputs one odd chain coordinate with each execution of its
right loop, the two loops are executed the same number of times, and the odd co-
ordinates produced as output are the START numbers of starts at which proper
occurrences of p begin, it follows that each loop of F I N D A L L is executed as many
times as there are proper occurrences of p in L.

Since the table lookups in the T W I N I N D E X and the EVEN-ODD tests of c
are in the intersectio~l of the two loops, each of them occurs twice as many times,
in an execution of F INDALL, as the number of proper occurrences of p in L.

6. How PA TRICIA Detects the Presence of a Phrase and Finds Its Proper Occur-
r e n c e 8

Given a phrase p, P A T R I C I A tests it for proper occurrence in L as follows:

(i) Execute FINDONE, with p as input. The output is a chain coordinate c, which is the
chain coordinate c(p) of p if p is in L.

(2) Look in the text at the address START(c). If an occurrence of p is found there, then p
has a proper occurrence in L. If none is found, then p has no proper occurrence in L.

If the outcome of (2) is the conclusion that p has a proper occurrence in L, then
P A T R I C I A finds the location of all proper occurrences of p in L as follows:

(3) If the chain coordinate c found in (1) is odd, then p has only one proper occurrence in L,
and that occurrence is at START(c).

(4) If the chain coordinate c = c (p) found in (1) is even, then PATRICIA executes FINDALL,
with c(p) as input. The output is a stream of odd chain coordinates, c~ ,c2 ,...,c~. The proper

Journal of tile Association for Computing Machinery, Vol. 15, No. 4, October 1968

526 Do ~, MORmsON

occurrertces of p begin at START(c~), START(c.~), . . . , STAllT(c,~) and nowhere else. The
ends which extend p are those and only those which begin at the aforementioned s tar ts and
have length ItEIGHT(c~), t tEIGHT(c2) , -.-

N o t e that in all of (1), (2), (3), and (4) P A T R I C I A makes a rniifimal number of
examinations of the text:. Only in (2) does P A T R I C I A look at the text without
knowing in advance tha t the key p will be found there. I t will not be found there
only in ease p has no proper occurrence in L. In that case, P A T R t C I A has looked
at only one place in the text.

~["hese considerai:ions are of interest where storage space for text is at a premium,
and it may be necessary to place the text in a portion of memory not as readily
accessible as the main m e m o r y - - s a y a disk or magnetic tape. In this situation it is
helpful to know that P A T R I C I A takes only one look at the text to determine
whether p is in it or not, and only as many looks s.s there are proper occurrences of
p to recover all proper occurrences and their sequels.

Prior to looking at the text, P A T R I C I A examines t.he index in the course of
executing F I N D O N E and F I N D A L L . Hopefully, the index can be stored in a more
readily accessible portion of the memory than the text. Whether it is or not, it is
helpful to know how many looks at the index P A T R I C I A takes to execute FIN-
DONE and F INDALL. In the execution of F I N D O N E , the chains whose co-
ordinates are examined are chains with monotonely increasing height, and all but
the last have height less than the length of p. Thus the loop of F I N D O N E cannot
be exeeuted more times than l(p) -[- 1. In most practical cases, the number of such
executions is substantially less than l(p), especially where l(p) is large. This is true
because of the redundancy of the language. If the language appearing in L is a
reasonably random sample of the possible sequences of A's and B's, then one can
expect that an. average number of executions of the loop of F I N D O N E per execution
of F I N D O N E would be asymptotic to log~.(l(p)). This would also be the average
number of table lookups in the T W I N I N D E X , table lookups in the HEIGHT
I N D E X , arid of each of the other computations which occur in the loop of FIND-
ONE.

Similarly, the number of lookups and other functions performed in F INDALL is
strictly determined by the number of proper occurrences of p in L. Each instruction
in either loop of F I N D A L L is executed precisely as many times as there are proper
occurrences of p in L, and the two instructions which are in both loops, twice that
number. These are the table lookups in the T W I N I N D E X and the EVEN-ODD
tests of c.

7. Subroutines ADD p and BUILD I N D E X

Suppose that an index exists for a library L and a set of starts, S T A R T (l) , START
(3), START(5), - • • , START(n) , for some odd integer n. And suppose it is de-
sired to add to the library a new phrase p, no~ in L, arid to make its occurrence
proper one by denoting the place where it begins as a start. The resulting extended
library, consisting of L arid p arid the left parts of p which are not in L, is called L'.

The subroutine ADD p modifies the text and index of L to form a text and index
for L' as follows. See Figure 4.

(1) If p is a r ight part, of a phrase already in the text and has been recognized by FINDSTART
as a key whose present occurrence should be recognized as a proper occurrence, then proceed

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 196~

PA TRICIA
627

BEGLY.
Is p a rlgh-t part of
an end a]read~ in L?

Place the address at
%~hich an occurrence
of p begins in START
IND}~D< as START (n+l) =
STAI~T (n+2)

Yes

------._----__2

Execute FIKYDONE with p as
input. Exit with c = c(p')
where p' is an end in L
~fnish shares ~¢ith p a left
part q which is the longest
left parb of p in L.

~ Find Z(q) by coraparing p and p~
If q is not shorter than p or
not shorter than p'~ ERROR E~flT~

Execute F I ~
input. Exit witH~ c = c(q) I

~g41N number of the longest]
twin left pa~ ofq in L
and TC (t) = ~'m [~

l

A B

FTC(n+i)) = n+2

I ,
, + . ~ ,,

I ~o(t) = n i E x i ~

Fro. 4. Flowchart for A D D p

1

to (2). If p is not already in the text, then add it at the right of the previously recorded text,
or at any other place where there is room for it.

(2) Recognize the newly encountered occurrence of p as a proper occurrence by designating p
as E N D (n + 2) and entering its starting address in the START I N D E X as START(n + 2)
and START(n + 1).

(3) Execute F I N D O N E with p as input. This yields a chain coordinate c = c(p') where p' =
E N D (c) is an end which shares with p a longest left part q, which is the longest left part q of
p which is in L. Compare p and p' to determine the length of q. Two possibilities arise here,
either of which indicates an imminent violation of Rule 1.

(a) p may be already in L. In this case, the comparison of p and p' will reveal that p is
a left part of p' and therefore already has a proper occurrence in L. It would, in this case, be
a violation of Rule 1 to permit a second proper occurrence of p. (See Sections 8 and 9 for ways

: to avoid this possibility.)
(b) p' may be an end already in L and a left part of p. This situation is revealed when

c is odd and l(q) = HEIGHT(c) . In this situation, adding a proper oecurrenee of p would intro-
duce a second proper occurrence of p's left part, p'. This would also violate Rule 1. (See Sections
8 and 9 for ways to avoid this possibility.)

If neither of the situations described in (a) or (b) arises, then p and p' are both extensions

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

528 D . R . MORRISON

of q; one is an extension of qA and the other of qB, and one and only one of these, qx, is in L.
The other, qy, is the shor tes t left par t of p not in L. In this case, go on to (4).

(4) If l(q) < HEIGt tT (c) = l(p ') , and l(q) < l(p), then extend the H E I G H T I N D E X by
enter ing:

H E I G H T (n 4- 1) = l(q)

H E I G H T (n + 2) = l(p)

This step, together with step (2), identifies p and q, respectively, as the new E N D (n + 2) and
its stem, BRANCH(n + 1).

(5) Execute F I N D O N E with q as input . Since the presence of q in L is a l ready established in
(3), the ou tpu t of F I N D O N E consists of a pair (t, c), where c is the chain coordinate of q in
L, and t is the twin coordinate of the shor tes t member of CHAIN(c) . The addit ion of p to L
has made q a branch and has spl i t CHAIN (c) of L into two oh'tins of L'. The phrases in
CHAIN(c) of L which are longer than q are still in CHAIN(c) of L'. The shor tes t member of
t h a t chain is the T W I N qx. The members of CHAIN(c) of L which are shorter t h a n qx form the
new CHAIN (n 4- 1) of L' , and q is the longest member of t h a t chain. This fact is recognized
by replacing the c which occurs in the TWIN I N D E X as TC(t) by an n + 1.

(6) Extend the twin table by en te r ing c and n + 2 as the new chain coordinates of the new
twin extensions qA = T W I N (n + 1) and qB = T W I N (n + 2) of the new B R A N C H (n + 1) = q.
Which of the two acquires which chai~l coordinate depends on which of the two was already in
L and which has jus t entered L ' as a left pa r t of p. (See (3) above.)

The index of L has now been modified to an index of L'. Figure 5 is a modification
of Figure 1, showing the changes in Figure 1 which result from adding a new phrase
p = BAAA to the previously existing library and executing A D D p. In this ex-
ample, q = BA is the new branch, the stem of the new end, BAAA.

FzG. 5.

TEXT

'A
2 3 4, 5 6 7 8 9 i0 ii 12 13 14- 15 I(~ 17 I$ 19
B B 'A B A B B' 'B A 'B A B B A' '8 A. A ^,

CHAIN 1 6 -~-'4 1 2 3 4 5 6 7
T ~ 9 111 I(,j ONA N 4, 3 1 2 ZS5 7 1.91&!

LENGTH HEIGHT INDEX 7 ~.I~l!
End (1) (B o o k) CHAIN I 2 3 4 5 6

i "1":.1" h

8 ABBABABB IHEIGHT ~ ~ 5 0 7 3 51ZL~i
i End ~. 5)(. Book)

7 ABBABAB BABABBA
t I"

6 ABBABA BABABB
~' End (3) T End (7)

5 ABBAB ABABB BABAB BABBA

T [BABtA BArB B END ('~) ABBA ABAB BAAA
Tw itn~6) Twin(7)

3 AI8 ABA I Br a~h(6)-~" 5AA

Tw i n(3)t_Branch Tw i n~(2) 2 # [T ~ "I'WIN (~)
2 AB BA B-RA~/CH (&)

i A t J
T w i n (4) * - - B r a n c h (4) - - ~ T w i n (5)

_ft. T w i n (l)
1 2 3 4, 5 6 7 8

CHAIN NUMBER

Representa t ions of a r i g h t l i b r a r y af ter modification by ADD p

Joul~aal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

PA T RI C IA 529

ZEGIN. Construct T~ START 12YOzTX~ }~IG}{T]

--A

Read a book b~ to be added to L. Let p = b,

.

. . . . ~ ' - - - - - - ' Replace p by its right
! ~rt vhich begins at i

r - "''-2~ . ~ Yes I the st~t Just di~cov- i
| , t :~ e r~_.) . ,y F~D{DS~±\~,]
| Fa~eeu~e Fi?~D~T*<~ ~i~n I .
| p a s i n p u t . Are t~here {
| starts in p after the [
| begirming of p?]

e more books to be added to L?

No

Fro, 6, Flowchart for BUILD INDEX

........]

BUILD I N D E X (see Figure 6) begins with an index for a trivial library and ex-
tends it by successive applications of ADD p to an index for an arbitrary libra W L,
lit reads successive books to be included in L, serum:lag each of them by FIND~
START, the subroutine specified by the]ibraria,a for identifying starts within an.
input book, I t executes ADD p once for each start recognized, including one execu-
tion :for the start automatically recognized at the beginning of each input book.

8, Rule 2

Rule 1 requires that each END shall not have more thau one proper occurrence in
the library L. This is necessary to insure that an END can be uniquely idea, tiffed
with the START at which its occurrence begins and the BRANCH with the E N D
whose S TEM it, is. The entire coordinate system upon which PATRICIA operates
depends on these relations.

There are several very simple ways to insure complimme with Rule 1.. One of them
is:

RWL.E 2. Each book ends with a sequence of symbols called its identifier,
wtfich occurs at no other place and within whidt there am no starts.

If Rule 2 is observed, then every end includes the ktentifier of the book of which
it. is a right part and is, therefore, a part of no other book. Since the ends which are
right parts of the same book nmst have diffel<mt lengths they must all have differ-
ant starting places, and compliance with Rule 1. is assured.

J o u r n a l of t h e Assoc ia t ion for C o m p u t i n g M a c h i n e r y , VoL 15~ No, 4, Oc t obe r 1968

530 D. R, MO~tRISON

Rule 2 is probably the simplest way of insuring compliance with Rule] and may
be the most efficient w~y. There are many ways in which identifiers can be generated
for' use in Rule 1. They can be serial numbers generated by BUILD I N D E X and
attached to each book before it is operated on by ADD ~9, or they could include
START addresses of the book or accession numbers defined by some system in use

by the library.
If they include S2'ART addresses, then PATRICIA can, by scanning art END(e)

of which a key p is a left part, determine where the book b, of which e is a right

part, begins, and return as output, all of b.

9. Reverse Library

In this section the reverse library technique is described; this is an alternative to
Rule 2 for complying with Rule i1. Its description is much more complex than that.
of Rule 2, and its use is recommended only in certain situations where compliance
with Rule 2 is cumbersome or inefhcient. These are situations in which L is very
large, so that available memory is a limiting factor, and/or the quanti ty of computa-
tion called for by BUILD I N D E X is exorbitant. They are situations in which,
furthermore, L includes numerous instances of right parts common to many books
whose many occurrences should, in the librarian's judgment, all be retrieved when
keys occurring within them are presented. An example of such a situation is a
business directory in which inany entries terminate with a business address whose
last part is common to many entries. Another example is a bibliography in which
many entries terminate with a common publisher's name or journal name. While
Rule 2 will handle such examples, it does so by adding identifiers to differentiate
the many entries with identical endings and by entering into the index the start
from each of them. This procedure generates large numbers of starts associated with
nearly identieal ends and thereby expands the index. 3)he reverse library technique
permits retrieval of all such endings, even though only the first occurrence of each
end is designated as a proper occurrence. This is achieved at a cost of one additional
start per book and the associated additional index data and indexing computation.

I t is useful, in applying the reverse library technique, to select a symbol, say A,
to be called the STOP SYMBOL, which will be a right part of every book, hence
of every end, and which will have no other occurrences. This insures partial compliance
with Rule 1, in tha t ends will have no oeeurrenees as nonends. Full compliance with
Rule 1, however, still requires that, each end be restricted to one proper occurrence

as an end.
Before going into a detailed description it is helpful to describe, in general terms,

how the reverse library technique accomplishes its purpose in a particular example.

Consider the library L whose books are:

I SEE T H E BIG BLACK B E A R A

I SEE T H E BIG BROWN B E A R A

I SEE T H E L I T T L E BLACK B E A R A

I SEE T H E L I T T L E BROWN B E A R A

Suppose that starts have been identified at the beginning of each word, except at
the second occurrences of BLACK and BROWN and at the second, third, and

Journal of tile Association for Comput ing Machinery, Vol. 15, No. 4, October 1968

tgA T ~ I C I A 531

fourth occurrences of BEARA, which are prohib:ited as starts by/7,ule 1. Confronted
with this library, PATRtCIA will build an index. On being asked for all right in-
extendible right extensions of t~LACK, PATRICIA will respond ttmt there
is exactly one, namely, BLACK BEAlr{A. PAT~ ICtA will not point out, however,
t ha t BLACI(BE ARA has occurrences as a right part of more than one book and
~,ilI furnish a text address for only one of the occurrences.

But now suppose that we augment the library L by including not only the four
books listed above, with starts as indicated, but also four more, consisting of the
first four ,reoJ bae/;wa~'d, with s[arts only at the beginnings of the reverse books.

AgA~[g }IOA~I8 ©Ig ~tHT ~ 8 I

A g A ~ g)IOA~I~{ 0{gTTLI ~tHT ~t~d8 I

A~IAgg ~WOHK ©ig ~HT ~ 8 I

AfIAE[~t T/IWO}I~t ~gTTIJ ~[HT 35[8 I

Now suppose we wish to find all occurrences of BLACK. PATRICIA first finds
all right inextendible right extensions of BLACI(. There is only one, BLACK
B][~ARA. Turning this around yields A,}tAS~{)tOAg~t. PATRICIA then finds
all right inextendible right extensions of/k.~:IAZ8)tOAI~[. These are;

A~IAg8)IOAdg Dig EIHT g[~8 I

AfIA~[8[}IOAA8 ~LITTLI gr iT ~ 8 I

Turning this around yields:

I SEE THE BIG BLACK BEARA

I SEE THE LITTLE BLACK BEARA

which is a complete list of all left inextendible left extensions of right inextendible
right extensions (that is of all books which include occurrences) of the word BLACK.
Similarly, interrogated with the key, BEAR, PATRICIA will learn that BEAk
has only one right inextendible right extension, BEARA. It will then reverse this
and find that its reverse, A~IA~Ig, has four right inextendible right extensions; and
their reverses are all the four books in L.

t~ATRICIA performs this feat without actually storing anything backward or
turning anything around; it simply builds a part of its index while reading ~he text
from right to left, and part while reading from left to right,. Furthermore, since it
is only right ineztendible L-phrases whose left, inextendible left extensions are sought,
and since these all terminate at the right ends of books, it is only at the beginnings of
the reverse books that starts are needed. Thus the reverse library technique adds
only one start per book to the index, regardless of how many starts per book there
Were in the original library L.

Now let, us consider in detail what PATRICIA requires in the form of TEXT,
INDEX, and subroutines to implement the reverse library technique. Required are :

(I) A single text, to be read from left to r ight when reading the forward l ibrary L, and to be
:ead from r ight to left when reading the backward library, L*.

',2) A single index which indexes the combined library, L U L*.

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

532 o . n . MOm~ISO~

(3) The subroutine F I N D A L L , which applies alike to the forward library L and the reverse
library L*, because it reads no text.

(4) Variants, FINI)ONE* and ADD* p, of F I N D O N E and A D D p, which ctiffer only in the
manner in which they read the text or the input phrase p. F I N D O N E * and ADD* p read the
input phrase and text from right to left, rather than from left to right.

(5) A variant of BUILI) I N D E X , which we call M O D I F I E D B U I L D I N D E X , which adds
starts in L, essential ly as BUILD I N D E X does, but also in L* when a new book b is added to
L and its reverse, b* to L*. M O D I F I E D BUILD I N D E X is described in detail later; its flow-
chart is shown in Figure 7.

(6) An index component, called the R E V E R S E I N D E X , which relates chair, s in L to chains
iu L*. The R E V E R S E I N D E X is a tabulation of the function REVCtI defined for all odd chain
coordinates n by

REVCH(n) = c (END*(n))

where END*(n) is the reverse of E N D (n) , the longest phrase in CHAIN(c) . That is, END*(n)
is E N D (n) read backward. END*(n) is in L* if E N D (n) is in L, and REVCH(n) is its chain
coordinate. If ENID (n) is in L*, then E N D (n) is a reverse hook, END* (n) is the corresponding
forward book, and REVCH(n) is the number of the chaia in L whose longest member is the
forward book END* (n).

I BEGIN.
BUILD INDEX for trivial library.

1 1 t _.B already in L? ~ Areto betherereadm°reln? books

Yes I No

Yes

I .No Is p a]ready in L?]

I ,
I I)id FINDSTART find a right
part q of p, shorter than p,
whose occurrence in p should
be retrieved when q is the
key?

~VCH (c(p)) = n '+l I

No

I Execute ADD ~ p. One
chain coordinate, n,
is replaced im the
TWIN INDEX BY nt.
Remember n and n;°

i+ = REVCH (n l) n'+3
~EVCH (nS+R ~ n'+l

=hi

FIG. 7. Flowchart for modified BUILD I N D E X

Journal of the Association for Computing Machinery, Voh 15, No. 4. October 1968

p A T R I C I A 533

In the implement, ation to be described, a book b in L and its reverse, b* in L*,
~vill have consecutive odd chain numbers; if b* = END(n) , then b = END(n -[- 2).

For any odd n, whether END(n) is a whole book or a right part of a book, the
o~le proper occurrence of END(n) in the ~ext begins at START(n) and ends a~
S~YAI~:T(REVCH(n)), where the reverse of the book it is in begins. Its length,
therefore, is

HEIGHT(n) = ~ (START(REVCt I (n)) - START(n) + 1),

~vhere the sign depends on whether END(n) is in L or L*: plus if in L, minus if in
1U*. Since, for odd n, H E I G H T (n) can be readily computed from the START and
2V~:EVERSE indexes, it is not necessary to store H EIG H T(n) for odd n. The memory
s p a c e assigned to HEIGHT(n) for odd n can, therefore, be used instead to store
I~EVCH(n) . Thus the reverse library technique requires no more index space per
s~urt t~han the implementation described earlier.

~emarks on M O D I F I E D BUILD I N D E X follow (see Figm'e 7). M O D I F I E D
B U I L D I N D E X operates essentially as BUILD INDEX, except that it adds,
t h r o u g h ADD* p, the reverses of each new book to the index, as well as the new
b o o k and the right parts of it selected by F INDSTART. M O D I F I E D BUILD
I N D E X also builds the REVERSE I N D E X by computing the function REVCH.
T o do this it has to note the branch coordinate, n', of the stem of the most recently
a d d e d reverse book and the chain coordinate n which that stem had before the
b o o k was added. As noted earlier, where b is a book, REVCH transposes the chain
coord ina tes n' + 3 and n' + 1 of b and its reverse b*. When p is a right part of
t h e most recently added book b, and of no earlier boo]% then REVCH(c(p)) is the
c h a i n coordinate n' + 1 of the most recently added reverse book. When, however,
p is a right part of the newest book, and also of an earlier boolc, then Rule 1 pro-
h i b i t s the designation of the new occurrence as a new start. In this ease, ADD p
is not executed, and the end p is not added again. In this situation, p is already
in L, and its chain coordinate has already been assigned a reverse by REVCH.
I t :is possible, however, that this assignment was rendered obsolete by the earlier
r ep lacement of n by n' as the chain coordinate of certain phrases which are right
p a r t s of the newest book. This possibility is investigated by testing whether
[~I~]VCtI(c(p)) = n. If it is, then the value n is obsolete and is replaced by n'.
[f t.he test fails, then the REVERSE I N D E X is up to date for p, since no other
~hain coordinates of ends in L* which were present before the last book was added
h a v e been altered. In this ease the same remarks apply to all properly occurring
~'ight, parts of p, attd the loop is completed.

Confusion may arise as a result of phrases which are in L f-1 L*, that is, in both
L a n d L*. Confusion may also arise if a phrase p is presented as a key, in search of
~Xtensions in L, which has, in fact, extensions in L*. Ways to avoid this kind of
~onfusion are described below.

I t is inevitable that there will be phrases which are in both L and L*. One such
~hrase is f~. Unless L is a trivial library, there will be at least a few others. Unless

i s a very unusuM library, which includes many phrases read both forward and
>aekward, there will be at most a few phrases which are in both L and L*.

~Phe stop mark, /~, and its utility are described above. The stop mark, /k, has
re-~'erse,/~*. Since/k is a right part of every book in L, it follows that its reverse

~',* is a left part of every book in L* and therefore of every L*-phrase longer than

Journal of tile Association for Computing Machinery, Vol. 15, No. 4, October 1968

534 D.U. ~,~OUU~SON

/k. If we prohibit proper occurrences of /k* ix~ L, theix the phrases which are in
L n L* will all be left parts of /k*, and, presuming that /%* consists of only a
few bits, say six, the number of left parts of /%* will be small. None of them will
be right inextendible in L [J L*, so we are guaranteed at least that the ends iu
L [J L* are all in L or L* but not in both. I t follows that ends in L are not in L*;
and their left inextendible left extensions which are retrieved by FATRICIA are
all in L, not in L*. There is still a possibility, however, that a key, p, will be entered
which is in fact a left part of/%* and in L n L*. Presented with such a key, unless
there are rules or program checks to prevent it, PATRICIA will return the bound-
aries of all books in L or L* which extend p and will look for the books in the text.
In those instances in which the book PATRICIA finds is in L*, the beginning bound-
ary will be to the right of the end boundary. How the computer will handle this
situation depends on the nature of the beast. A recommended preventative is to
reject keys which are shorter than/% or which include/%* as a left part.

10. Computer Implementation

All the algorithms described have been programmed for the CDC 3600 computer
and UNIVAC 1108 computers and applied to several substantial information-
retrieval problems. Reference [2] is an expanded version of this paper, which in-
cludes descriptions of these programs. Reference [3] is an earlier mathematical
paper in which the basic concepts used in the design of PATRICIA were formulated.

A C K N O W L E D G M E N T . The author acknowledges the valuable assistance of many
colleagues, especially that of NIrs. Charlene Lanford, who programmed all the
currently running versions of PATRICIA.

REFERENCES

1. FREDKIN, E. Trie memory. Comm. ACM S, 9 (Sept. 1961), 490-500.
2. MORRISON, DONALD R. PATRICiA--Practic~fl Algorithm to Retrieve Information

Coded in Alphanumeric. Res. Rep. SC-RR-67-734, Sandia Corp., Albuquerque, N. Mex.,
Oct. 1967.

3. MORRISON, DONALD R. A library automaton. Unpublished notes.

I~ECEIVED NOVEMBER~ 1967; REVISED FEBRUARY, 1968

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

