
Generative Communication in Linda

DAVID GELERNTER

Yale University

Generative communication is the basis of a new distributed programming langauge that is intended
for systems programming in distributed settings generally and on integrated network computers in
particular. It differs from previous interprocess communication models in specifying that messages
be added in tuple-structured form to the computation environment, where they exist as named,
independent entities until some process chooses to receive them. Generative communication results
in a number of distinguishing properties in the new language, Linda, that is built around it. Linda is
fully distributed in space and distributed in time; it allows distributed sharing, continuation passing,
and structured naming. We discuss these properties and their implications, then give a series of
examples. Linda presents novel implementation problems that we discuss in Part II. We are
particularly concerned with implementation of the dynamic global name space that the generative
communication model requires.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design--network communications; C.2.4 [Computer-Communication Networks]:
Distributed Systems--network operating systems; D.3.3 [Programming Languages]: Language
Constructs-concurrentprogramming structures; D.4.4 [Operating Systems]: Communication Man-
agement-message sending.

General Terms: Languages

Additional Key Words and Phrases: Distributed programming languages

1. INTRODUCTION

In his introduction to the distributed programming language SR, Andrews writes
that:

there are only three basic kinds of mechanisms and three corresponding models of
concurrent programming: monitors (shared variables), message passing, and remote op-
erations [l, p. 4051.

In the following we introduce generative communication, which, we argue, is
sufficiently different from all three to constitute a fourth model. Our new
technique is closest to message passing, but the differences between the two are
as significant as the similarities.

How should communication be incorporated in a programming language? is
our central question. The question has grown in interest as hardware has become
cheaper and networks connecting large numbers of inexpensive processors cor-

This material is based upon work supported by the NSF under grant MCS-8303905.
Author’s address: Dept. of Computer Science, Yale University, New Haven, CT 06520.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission d the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0164-0925/85/0100-0080. $00.75

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985, Pages 80-112.

Generative Communication in Linda l 81

respondingly more important. Such networks fall into two main classes: local
area nets connecting autonomous personal workstations; in “network computers,”
still purely experimental, large numbers of processors work simultaneously on a
single problem. Both sorts of network call for the construction of programs that
run on many processors at once. On local area nets, these multimachine programs
are mainly network operating-system and utility routines such as file and mail
servers. On network computers, they include the operating system and any
applications that are amenable to parallel solutions. Applications that have been
studied in this context include numerical algorithms, simulation and sorting [5];
parallel artificial intelligence programs are of rapidly growing interest. (See, for
example, Fehling and Erman [8].)

Network operating systems and parallel applications may be written in con-
ventional languages augmented with systems calls for interprocess communica-
tion. There is broad agreement, however, that distributed programming in a
distributed language-in a language, that is, to which communication is intrin-
sic-is in principle more satisfactory. What should a distributed language look
like? In particular, how should it deal with interprocess communication? The
concurrent systems languages that were based on the work of Dijkstra, Hoare,
and Brinch-Hansen (for example Brinch-Hansen’s Concurrent Pascal [2] and
Wirth’s Modula [27]) have generally been taken as starting points. Programs in
both concurrent and distributed languages may consist of many concurrent
processes, but the two language categories differ in the types of inter-process
communication they may incorporate. The multiple processes of a concurrent-
language program are multiplexed on one machine, not distributed over many;
accordingly, they need not execute in wholly-disjoint address spaces, and they
may use shared variables or a generalization of conventional parameter passing
such as the monitor call to communicate. The usual assumption in distributed
languages, on the other hand, is that concurrent processes sometimes execute on
separate machines and always in disjoint address spaces. They may therefore
communicate with each other only by sending and receiving messages that are
carried between address spaces by a runtime communication system.

Generative communication is the basis of a new distributed programming
language called Linda, developed originally for the SBN network computer [ll].
But many distributed or distributable programming languages have already been
proposed: CSP [17], DP [3], Plits [9], ECLU [23], Starmod [4], Ada [6], and SR
[l] are examples we discuss below. What need for another one? We argue first
that, irrespective of the strengths and weaknesses of the many other proposals,
Linda’s unusual features make the language suggestive and interesting in its own
right. Where most distributed languages are partially distributed in space and
nondistributed in time, Linda is fully distributed in space and distributed in time
as well, as we discuss. Second, Linda appears in many cases to be both simpler
and more expressive than existing proposals within the application domains of
interest. Linda attempts the same combination of simplicity and power in the
distributed domain that the systems language C [20] achieves in the sequential
one.

The Linda design encompasses a model of computation with implications
beyond distribution and communication as such. In this paper we are concerned,
however, with communication exclusively. We introduce other aspects of the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

82 l D. Gelernter

Linda design only when communication issues make this necessary, and then
only in brief outline. Part I deals with generative communication in Linda. Part
II briefly discusses the implementation of generative communication on networks,
particularly on network computers.

A final point: We attempt in the following to place Linda in context by
comparing it to other distributed languages, as noted. But there are a very large
number of designs that are relevant to this work in one way or another, and not
all can be discussed here. We have chosen to concentrate on those other proposals
that are closest in conception to ours, because the differences in these cases are
least obvious. Other reports discuss Linda in relationship to Shapiro’s Concurrent
Prolog [14] and to several AI languages [13]. We also omit any discussion of
formal semantics here; some semantics issues are discussed elsewhere [131.

2. PART I: GENERATIVE COMMUNICATION

A Linda program is a collection of ordered tuples. Some tuples incorporate
executing or executable code; others are collections of passive data values. We
are interested only in passive tuples here.

The abstract computation environment called “tuple space” is the basis of Linda’s
model of communication. An executing Linda program is regarded as occupying
an environment called “tuple space” or TS. However many concurrent processes
make up a distributed program, all are encompassed within one TS. Consider
two communicating processes A and B. To send data to B, A generates tuples
and adds them to TS; B withdraws them. (Figures 1 and 2.)

This communication model is said to be generative because, until it is explicitly
withdrawn, the tuple generated by A has an independent existence in TS. A tuple
in TS is equally accessible to all processes within TS, but is bound to none. The
remainder of this paper concerns the three operations defined over TS; out()
adds a tuple to TS, in() withdraws one, and read() reads one without withdrawing
it.

The following sections first define out(), in(), and read() in their simplest
forms, then generalize them by introducing structured names. Next, we discuss
the basic properties inherent in our definitions that distinguish Linda and set it
apart from other distributed programming languages. Finally, we present a series
of examples.

2.1 Simple out(), in(), and read0

2.1.1 Preliminary: The Type “name”. As a type-specifier, “name” refers to a
character string acting as an identifier. Name-valued variables and constants are
attached as identification tags to tuples, as we discuss.

2.1.2 Definitions: out(), in(), and read(). The out() statement appears as

out(N, P,, . . . , P,),

where Pp, . . . , Pj is a list of parameters each of which may be either an actual or
a formal, and N is an actual parameter of type name. Assume for the time being
that all of the Pi are actual parameters. Execution of the out() statement results
in insertion of the tuple N, Pp, . . . , Pj into TS; the executing process continues
immediately.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda 83

TS

A

k!Ei tuple

ccl

Fig. 1. To send to B, A generates a tuple. . .

Fig. 2. . . . and B withdraws it.

The in() statement appears as

in(N, P2, . . . , P,),

where Pp, . . . , Pj is a list of parameters each of which may be either an actual or
a formal, and N is an actual parameter of type name. Assume for the time being
that all of the Pi are formal parameters. When the in() statement is executed, if
some type-consonant tuple whose first component is “N” exists in TS, the tuple
is withdrawn from TS, the values of its actuals are assinged to the in()-
statement’s formals, and the expression executing the in()-statement continues.
If no matching tuple is available in TS, in() suspends until one is available and
then proceeds as above.

The read() statement,

read(N, Pz, . . . , P,).

is identical to the in() statement except that, when a matching tuple is found,
assignment of actuals to formals is made as before but the tuple remains in TS.

Nondeterminism is inherent in these definitions. Many in@/, . . .) statements
may execute simultaneously and suspend in several portions of a distributed
program. Execution of out@/, . . .) un d er such circumstances makes a single copy
of the output tuple available. Some suspended in() statement will receive it, but
which is logically nondetermined. The same holds for ‘an in(iV, . . .) or read(l\r,
. . .) statement that executes subsequent to many out()s; some stored tuple will
be matched, but which one is nondetermined.

The definitions require that tuples be inserted into and withdrawn from TS
atomically. If two in() statements contend for one tuple, one gets it and the other

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

84 l D. Gelernter

does not; they cannot split it. (Note that if a read0 statement and an in()
statement contend for one tuple, the two statements are served, as always, in
arbitrary order. If the read() statement is served first, in() may subsequently
withdraw the same tuple. If in() is served first, it removes the tuple and read()
will block until another is available.)

Tuple names are global to a given program’s TS. A tuple added to TS may be
removed by an in() statement occurring anywhere else in the program.

2.2 Structured Naming

Let +t refer to any tuple added to TS by an out(+t) statement. Then -t designates
the parameter list of any in() or read() statement that may legally receive tuple
+t.

All of the hst F,, Fk cited by an in() or read() statement need not be
formals. Any or all components on the list may in fact be actuals. The actual
parameters appearing in a -t tuple (including the initial name-valued actual)
collectively constitute a structured name. Thus the statement

in(P, i:integer, j:boolean)

requests a tuple with name “P”. But it is also possible to write

in(P, 2, j:boolean);

in this case a tuple with structured name “P, 2” is requested. The statements

in(P, i:integer, FALSE)

and

in(P, 2, FALSE)

are also possible. In the first case, the structured name is “P,,FALSE” and in the
latter “P,2,FALSE”. All actual components of a --t list must be matched identi-
cally by the corresponding components of a +t tuple in order for matching to
occur.

Structured naming is similar in principle to the “select” operation in relational
database systems, and may be said to make TS content-addressable. It also
resembles in a rudimentary but significant way the pattern-matching features
that are part of some AI and logic languages, particularly Prolog [26]. The in()
statement and the Prolog assertion both deal with tuples whose unspecified
components (the formals) may be inferred from some arbitrary specified subset
(the values).

Just as components of -t may be actuals, any component of a +t tuple, except
for the initial name-valued actual, may be a formal. Thus

out(P, 2, FALSE)

represents the simplest form of out() statement, but

out(P, i:integer, FALSE)

is also possible. The tuple P,i:integer,FALSE may be received by any ino
statement that specifies first component “P”, last component “FALSE”, and
middle component some actual of type integer. A tuple may in general be received
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda 85

by any in() statement with an identical actual where the tuple has an actual, and
a type-consonant actual where the tuple has a formal. Formals never match
formals. The use of formals in out() statements is referred to as inverse structured
naming.

Note. A formal declared in an in() statement’s parameter list is defined
throughout the immediately enclosing lexical block, exactly as if it were declared
as a local to that block. Variables declared conventionally (rather than in
parameter lists) may be used as formals by in() statements wherever they are
lexically visible. In this context they must be prefixed by “var’‘-otherwise they
will be interpreted as actuals and part of a structured name. Thus, in the sequence

i:integer . _ . in(P, var i),

the integer variable i serves as an in-statement formal. In the sequence

i:integer . _ . in(P, i),

i’s value is one component of the structured name P, i. Finally, note that all
formals declared within in() statements must include explicit type designators.
The statement in(P, i, j:integer) requests a tuple with structured name “P, i”--
it does not declare two formals, i and j, of type integer.

A formal declared in a +t tuple is defined only within that +t tuple. In the
present context, formals in +t tuples serve only as place holders, and their names
are unimportant.

2.3 Distinguishing Properties

Generative communication as defined by in(), read(), and out() has two funda-
mental characteristics that give rise to a series of distinguishing properties.

The first fundamental characteristic is communication orthogonality. It is
ordinarily the case that execution of an arbitrary distributed programming
language’s receive statement r presupposes no knowledge about which process is
to execute the matching send-statements; it is in fact usually the case, on analogy
with procedures or subroutines in sequential languages, that r may receive input
from any number of sending processes (as a procedure may be invoked from any
number of points within a sequential program). Most send statements, however,
name the receiver explicitly in some fashion-on analogy with a procedure-
invocation statement, which invariably names the invoked procedure. In Linda,
on the other hand, communication is orthogonal in the sense that, just as the
receiver has no prior knowledge about the sender, the sender has none about the
receiver. Communication orthogonality has two important consequences: space-
uncoupling (also referred to as “distributed naming”) and time-uncoupling. A
third property, distributed sharing, is a consequence of the first two.

pl. Space uncoupling (distributed naming). Distributed naming refers to the
fact that a tuple in TS tagged “P” may be input by any number of address-space-
disjoint processes. In particular, j processes executing on j distinct network nodes
may all accept tuples tagged with one name. Distributed naming means that
Linda is fully distributed in space. Distributed programming languages ordinarily
(as noted) allow a receive statement to accept data originating in any one of

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

86 l D. Gelernter

(a)

(b)
Fig. 3. Distributed naming. (a) Tuple t input by R may have
originated in any one of many address spaces; (b) tuple t
output by S may be received in any one of many address
spaces.

many distinct address spaces (Figure 3a). Linda allows a sender to direct data to
any one of many distinct address spaces as well (Figure 3b).

p2. Time uncoupling. A tuple added to TS by out() remains in TS until it is
removed by in(). If it is never removed by in() it will, in the abstract, remain in
TS forever. In practice, tuples added to TS by a given distributed program will
be removed once all that program’s processes have terminated, unless the pro-
grammer indicates explicitly to the contrary. Despite these practical considera-
tions, Linda allows programs to be distributed in time insofar as process A in
which some out() statement appears may run to completion before process B, in
which the corresponding in() appears, is loaded. Thus, while distributed program-
ming languages ordinarily allow communication between processes that are space-
disjoint (Figure 4a), Linda allows communication between time-disjoint processes
as well (Figure 4b).

A third effect results from space- and time-distribution:

p3. Distributed sharing. Linda allows j address-space-disjoint processes to
share some variable u by depositing it in TS. The TS-operator definitions ensure
that u will be maintained atomically. It is not necessary (as in other languages)
that a shared variable be implemented by a process or module.

We refer to the second of generative communication’s two fundamental prop-
erties as free naming. For expository purposes we introduced type “name” first
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 87

space
(4

time \1
6)

Fig. 4. Distribution in time. (a) Space-disjoint
processes A and B communicate via TS; (b) time-
disjoint processes C and D-C terminates before
D starts-likewise communicate via TS.

and the idea of structured naming subsequently. In fact, the existence of type
name is a logical consequence of structured naming. Other distributed program-
ming languages distinguish between the name specified by an in() statement and
its list of parameters. In Linda, this distinction is eliminated: the name specified
by an in() statement is by definition the sequence of actual parameters that
appear in the in() statement’s parameter list. Actuals, however, are simply values
that appear in a parameter list. It follows that, if an in() statement specifies only
a single actual-by definition that single actual will appear at the beginning of
the list-then that single actual must itself be a value. Values have types, and
we say that the type of a value serving as an in() statement’s single actual is
“name”. These facts about Linda are collectively designated “free naming”, and
they result in two further properties.

p4. Support for continuation passing. If there are values of type name, there
must be variables of type name as well. Hence, names may be passed as tuple

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

88 l D. Gelernter

components, be assigned to formals, and be stored in arbitrary data structures
just as values of any other type may. We use “continuation passing” to refer
specifically to one process’s sending data to another, blocking in expectation of
a reply, and being continued ultimately by a third (or some nth) process. Linda
supports continuation passing in a simple and flexible way by allowing name-
type values to be tuple components and to be stored in arbitrary data structures
in the same way as values of any other type.

~5. Structured naming. Structured names allow in() and read() statements to
restrict, and out() statements to widen, their focus. They also allow one name to
generate a family of others.

The examples illustrate each of these properties together with the basic
program structures that Linda induces. It is incumbent upon the designers of a
language that, like Linda, maximizes power and flexibility in a broad solution
space over simplicity and convenience in a more narrowly constrained one to
provide for macro- and library-routine specification where simplicity and con-
venience are wanted. A macro definition facility is introduced and discussed in
the course of the examples. Finally, the examples refer to the several other
distributed or distributable programming language proposals mentioned above
for purposes of comparison.

The following sections present preliminary definitions, then a group of exam-
ples using simple in() and out() without structured names, a group using
structured names as well, and a final group using in() and out(), structured
names, and read().

2.3.1 Preparatory to the Examples: An Outline of Expression Structure in
Linda. In order to give examples, we need first to consider briefly the structure
of Linda expressions.

Linda expressions consist of simple statements and composed statements. The
term “expression” is appropriate for a collection of statements because statements
have values, but this does not concern us here. Simple statements include
assignments, procedure calls, and control statements. These are again unimpor-
tant in the present context; they are mainly identical to simple statements in C.
Composed statements on the other hand are germane because they determine
program structure. Linda has four composed statements: sequence-statements,
and-statements, or-statements, and star-statements.

Leteachofsi,..., aj be either a simple statement or a composed statement
enclosed in square brackets. A sequence-statement takes the form

s1; sz; . . . ; s,

and specifies that sl, . . . , aj are executed sequentially (or, in Linda’s terminology,
have sequential lifetimes). The and-statement

s, Ed s2 & . . . Ed s,

specifies that sl, . . . , Sj have concurrent lifetimes. For each pair of and-statement
constituents, if both are executable statements, they execute concurrently; if one
is a statement and the other is a variable declaration, the declared variable exists
for as long as the statement executes and is accessible to all constituents of the
and-statement within which it is declared. Thus the and-statement provides both

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda 89

for variable declaration and for concurrency. The and-statement terminates when
all of its constituents have either terminated or “quiesced” (as defined below).
Variables are always quiescent.

Variables may be declared only within and-statements. The special notation

s,; . . . in(P, i:integer); . . . i S"

is simply an abbreivation for

i:integer & [s,; . . . in(P, var i); . . . s,].

(These rules are unconventional, but since their justification and implications
lie beyond the scope of this paper, the reader is asked to suspend judgment. The
and-statement is the basis of Linda’s so-called symmetric structure, and it allows
for a richer collection of assignment-statement forms and of binding-environment
specifications than Algol languages ordinarily provide. These issues are discussed
in [131, and at length in [15].)

The or-statement

Sl I I--0ISj S2

specifies that sl, . . . , sj have mutually exclusive lifetimes. A single enabled
constituent of the or-statement is chosen for execution; the choice is made
nondeterministically at runtime. If no constituent is enabled, execution suspends
until one is. For present purposes, an or-statement constituent is not enabled
only if it consists of or begins with an in() statement and no matching tuple for
that in() statement is available in TS.

The star-statement

*s

executes “s” 0 or more times. If s begins with an in() statement (this is the
intended case), s executes once for each matching tuple available in TS; when no
matching tuples are available, the star statement quiesces. Ordinarily a quiescent
star statement terminates immediately, but it is prevented from terminating if it
is one and-statement component and other components of the same and-state-
ment are still active. A quiescent star-statement is reawakened by the appearance
of a new matching tuple in TS; it terminates when all other components of the
encompassing and-statement have quiesced or terminated.

Star-statements of the form

*[in(-t); s],

where “s” is any statement, are referred to as “in blocks”, and are so common
that it is convenient to introduce the following shorthand notation for them:

in(-t) * s.

2.4 Examples Using Simple in() and out0

2.4.1 BUS~C Communication Structures. out() and in() may be used to implement
message-passing in the obvious way. Remote procedures are implemented by
combining out() and in():

remote procedure call: out (P , me , out-actuak);
in (me, in-formals)

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

90 l D. Gelernter

remote procedure: in(P, who:name, in-formals) *
[body of procedure P;
out (who, out-a&&)
I

The distinguished name “me” is replaced by the compiler with any name that
uniquely designates the process within which it appears, where “process” is a
sequentially-executing code block and a distributed program may encompass
many processes.

The structure referred to here as a remote procedure may be equivalently
referred to as an “active procedure”-a procedure-like block that is executed by
a thread of control associated with itself, not with the caller. An active procedure
is neither reentrant nor recursively callable. In Linda it is ordinarily one com-
ponent of an and-statement whose other components are the processes that make
use of it. It disappears, as per the definitions of and-statements and star-
statements, when the encompassing and-statement terminates.

Note that Linda resembles Plits, ECLU, SR, and the language fragment
described by Kahn [191 in providing an asynchronous output operation.

2.4.2 Semaphores and Communication Orthogonality. A single-element tuple is
functionally equivalent to a semaphore. in(sem) is functionally equivalent to the
semaphore operation P(sem), out(sem) to V(sem). A semaphore “sem” is initial-
ized to value n by n repetitions of out&em).

The semaphore-like nature of in() and out() is one result of communication
orthogonality in Linda. The space- and time-uncoupling properties mean that
singleton “sem” tuples exist independently of the processes that generate them,
and outlive those processes if necessary. Distributed naming means that the
semaphores defined by in() and out() are in fact distributed semaphores (as
discussed, for example, by Schneider [24])-that is, semaphores defined over
arbitrarily-many disjoint address spaces. It is an expression of distributed sharing
that processes may share semaphores directly via TS; no executable code block
need be programmed to implement P() and V() requests. That semaphores are
primitive is also indicative of Linda’s simplicity and flexibility. Languages that
abstract at a level higher than semaphores rely, at least conceptually, on high-
level constructs (such as tasks or processes) to implement these low-level objects.

Linda differs from all other surveyed systems except CSP in making commu-
nication orthogonal. Linda and CSP are, however, orthogonal in opposite senses.
In CSP, communicating processes must name each other explicitly; data is
transferred synchronously from sender to receiver with no system-provided
buffering. Thus communication in CSP is space-coupled (because of the naming
rules) and time-coupled (because of synchronous transfer).

2.4.3 Distributed Naming. Consider a maximally-simple idle-node allocation
procedure for a network computer. Idle nodes might execute

in(idle, j:job-description);
execute job “j “.

To fork a new asynchronous task “k”, processes execute

out(idle, k).

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 91

Tuples tagged “idle” may be input by any network node because of distributed
naming. (Note that if the out() statement executes when there is no idle node in
the network, hence none executing its in(idle,) statement, the “idle, k” tuple
remains buffered in TS until some node becomes idle and picks it up. This is a
result of time-uncoupling.)

Another example: In Shoch and Hupp’s Ethernet worm programs [25] users
sometimes need to communicate with a worm segment. Any segment will do, but
the worm’s whereabouts are unknown until runtime. In Linda, worm segments
would execute

in(wormsegment, r: request);
execute request r,

and users with request k would execute

out(worm_segment, k).

None of the other languages under discussion supports distributed naming.
ECLU allows one name to be referenced by many processes, but only if all are
confined within one Guardian and hence within one physical node.

2.4.4. Synchronized Message Exchange: Calling-Routine Structures and Macro
Definitions. CSP provides (as noted) synchronizing message-exchange operators.
The receive operation suspends until a matching send is executed and the send
suspends until a matching receive. To implement these operations it is not
sufficient for the sender to transmit as soon as it reaches the send statement,
then suspend execution until the receiver forwards an acknowledgment. No
message buffering is to be provided; the sender therefore cannot transmit until
the receiver has suspended at its receive statement.

Presenting an implementation of these operations in Linda is a good occasion
for the introduction of a macro facility. Programs that use synchronous com-
munication specify or include the macro defintions:

def SYNCH-SEND(s:tuple) [in(get); out(s); in(got)]
def SYNCH-RECV(s:tuple) [out(get); in(s); out(got)].

To communitate synchronously, process A executes SYNCH-SEND (B , mes -
sage) andB executes SYNCH-RECV(B, m : message-type) _ Note that this im-
plementation requires that the singleton tuple “get” be buffered in TS, but does
not require that the message text be buffered.

These macro definitions are satisfactory only if they are used by a single pair
of processes within a given TS-otherwise the names “get” and “got” will be
ambiguous. More general definitions use structured names, as discussed below.

In conventional languages, called routines (procedures, functions, subroutines,
and so on) may be arbitrarily elaborate, but calling routines (the protocol followed
by one process in passing data to, and if necessary retrieving results from,
another) ordinarily consist of a single invocation statement. Linda allows the
programming of calling routines that may in general be as elaborate as the called
routine itself. SYNCH-SEND() is one example of a calling routine; others
follow.

2.4.5 Resource Servers: The Continuation-Passing Property; the Filter and the
Active-Monitor Structures. Continuation passing and communication orthogo-

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

92 l D. Gelernter

nality allow resource servers to be programmed using the familiar feeder-driver
paradigm instead of the input guards that are common in distributed program-
ming languages. In the latter case, request queues are maintained in the kernel
and are not directly accessible to the server. In the former, they are constructed
and maintained entirely by the server. We include two examples whose solutions
are included in the Preliminary Ada Rationale [X3]. The Ada solutions represent
an input-guard programming style that is usefully compared to Linda’s feeder-
driver style.

Disk head scheduler. The Ada example assumes that client processes will
communicate with the disk head scheduler by passing two parameters, one of
type “track” and the other of type “data.” We make the same assumption.

The logical structure of the Linda disk server is shown in Figure 5.
The user passes its name to the filter, blocks under this name, and continues

once its request has been filled by the server. Requests accepted by the filter are
passed on to the server directly if the server is free; otherwise they accumulate
in the filter, and the filter passes them onward in whatever order is appropriate
to the problem. The existence of the filter is transparent to the user. The filter
structure may be programmed in Linda as a result of the continuation-passing
property.

Users call the disk by executing the calling routine DISKSERVICE(track,
data), where

def DISK_SERVICE(t: track; d:data)
[out(diskrequest, me, t, d);

in(me)].

The server itself takes the form

DISK-FILTER&DISK

where DISK is

def DISK
*[[ask the filter for an i/o request:]

out(get-diskrequest);
(receive the request:]

in(diskdriver, who:name, i:track, d:data);
perform the physical ijo transfer;
[tell the user to continue:)
out(who) 1

DISK is an active procedure: It repeatedly asks FILTER for an i/o request,
performs it, and notifies the user that service is complete.

DISK-FILTER is an active monitor, a structure that in general takes the
form

shared variables &*[rllr21 . . . jrn],

where the ri are routines that access the shared variables in mutual exclusion.
An active monitor resembles a Hoare monitor (only the active monitor’s routines
are executed by the thread of control associated with the monitor itself, not with
the user), or an Ada accept block.

ACM Transactions on Programming Languagesandsystems, Vol. 7,No. l,January1985.

Generative Communication in Linda l 93

Fig. 5. A filter/server paradigm.

DISK-FILTER takes the form

where

def DECLARATIONS
disk-idle:boolean = true

& declarations required for building and maintaining
the i/o requests queue; queue frames will have
three fields,
of type name, track, and data

def DISK_ENQUEUE
[in(diskrequest, who:name, i:track, d:data);

[accept disk i/o request)
if (disk-idle) [send the request on directly:]

[out(diskdriver, who, i, d);
diskidle = false]

else insertwho, i, d in the i/o request queue
using any desired ordering discipline

1
def DISK-DEQUEUE

[[accept disk's request for the next i/o request]
in(get-diskrequest);
who:name& i:track& d:data& {local variables]

[if request queue is empty
[disk will be answered eventually by DISK_ENQUEUE:]
disk-idle = true
else [who, i, d = head entry on request queue;

out(diskdriver, who, i, d)]
II

The disk head scheduler is considerably more complex in Ada. The user calls
a procedure which calls an entry on its behalf; the entry registers the user’s
request and then the user suspends on another entry call, this time to one of a
family of entries. Meanwhile, a background task repeatedly calls another entry
to determine which request to serve next, and ultimately continues the user by
accepting the entry call on which it is suspended. The elevator algorithm used to
service i/o requests is intrinsic to the tasking and communication structure of
the Ada example. (It does not, because it need not, figure in the Linda example.)

The multiresource controller problem as stated in the Ada Rationale has users
requesting a subset of resources from among a set designated “A” through “K”.
Users request a resource group by passing to the server a parameter “group” of
type “resource-set”, and return a group by passing a parameter of the same type.
This example is simpler than the disk head scheduler. It requires an active
monitor only, with no additional driver process.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

94 l D. Gelernter

The Linda solution takes the form

The declarations include, as in the Ada example, a function “try” that returns
TRUE if the resource-set passed is free and can be allocated to a requestor, and
a variable “used” of type resource-set that records which resources are unavail-
able. Resource sets are bit vectors, and we assume Ada’s bit-wise logical opera-
tions. The request queue is built of frames containing a field “who” of type name
and a field “asked” of type resource set. For MRC-ENQUEUE and MRC-DEQUEUE,
we use

def MRC-ENQUEUE
in(MRC-Request, who:name, asked:resource-set);

[if (try(asked))
(assign this group to the requestor:}
[out(who); used = used or asked]
else append who, asked to the request queue

1
def MRCJEQUEUE

in(MRC-Release, released:resource-set);
[used = used and not released;
for each frame q in the request queue:
if (try(q.asked))
[award the requested group to the blocked requestor:)

[out(q.who); used = used or q.asked;
remove q from the request queue]

1 .

To request resource set s, users execute

REQUEST-RESOURCES(s)

and to release s,

RELEASE-RESOURCES(s),

where

def REQUEST_RESOURCES(s:resource-set)
[out(MRC-REQUEST, me, s);
in(me)]

def RELEASE_RESOURCES(s:resource_set)
out(MRC-RELEASE, s).

Note that the Linda example depends once again upon continuation passing.
The Rationale’s Ada solution is, again, considerably more complex logically.

The request queue consists of all nonaccepted calls to a single entry. To access
the :queue, the server accepts each waiting entry call and, if the request it
represents cannot be satisfied, instructs the requestor to reenter the queue via
another entry call. If the entire queue is to be inspected, the entire queue must
be cycled into and then back out of the server’s address space request-by-request.
Note that maintaining the queue in some useful order or keeping pointers into
the queue is impossible.

Discussion. This Linda example strongly suggests CSP, and it is easy to
imagine that a CSP solution would be nearly the same as the Linda version. This
ACM Transactions on Programming Languages and Systems, Vol. 7, NO. 1, January 1985.

Generative Communication in Linda 95

PROTECTION FILTER QUEUING FILTER

Fig. 6. A protection filter in place.

is not the case, because CSP lacks Linda’s free-naming property and therefore
cannot support continuations in a general way. The Linda solution depends on
the requestor passing its name to MRC-ENQUEUE, which passes it via the queue
to MRC-DEQUEUE. In CSP, names cannot be passed as parameters; the only way
the requestor can identify itself to MRC-ENQUEUE is by passing either an index
into a process array or some other parameter that allows the server to pick it out
of a statically-encoded list of possibilities. (Note however that extensions to CSP
that introduce ports and allow port names to be passed as parameters-see
Kieburtz and Silberschatz [21], for example-do allow this kind of solution.)

Of the systems surveyed here, CSP, DP, Ada, and Starmod do not allow general
continuation passing. ECLU evidently does not. SR and Plits do (although we
argue elsewhere [la] that their formalisms are considerably more complex than
Linda’s).

We conclude this section by considering briefly the question of access to tuple
names. A single distributed program encompasses many processes, and they all
share a single name space and a single TS. But when two different distributed
programs-say, a user program and the operating system-run on the same
network, each defines its own name space, and constituent processes of the first
program ordinarily have no access to tuples generated by the second. By prefixing
the internal representation of tuple names with program id’s, the kernel protects
each program’s set of tuples from reference, augmentation, or deletion by any
other program. There are clearly times, however, when a user program must have
access to names in the system’s or in some other user’s name space, and so it
must be possible to import external names or to receive them as parameters.
Programs may, however, specify, and the kernel must enforce, limitations on the
uses to which exported names may be put. For example, the system might export
the name “disk-request” for use in out() statements only; the kernel then traps
any in(disk-request, . . .) or read(diskrequest, . . .)
statements that occur outside the system. The system is free to protect itself
further by installing protection filters in front of servers. The name “disk-
request” might for example be exported, but the statement in (di Sk-r e -
quest, . . .) might appear in a protection filter that checks the identity
of the requestor against an access list local to the protection filter. If the requestor
has access rights, the public name “disk-request” is stripped off, and the request
tuple is forwarded under a private (nonexported) name to the queueing filter.
Otherwise, an exception is generated or bad status is returned (Figure 6).

2.5 Examples with Structured Names

2.5.1 Conversational Continuity: Structured Naming. “Conversational continu-
ity” as described by Liskov [23] refers to the following systems-programming
problem: (1) There are many identical instances of some server. (2) A user may
start a conversation with any instance, but having chosen one, should converse

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 19%.

96 l D. Gelernter

with that one exclusively for the duration of the conversation. (3) The multiplicity
of servers, the process of selecting one, and the obligation to stick with it should
be transparent to users.

A Linda solution:

servers execute:
initially:
in(server, U:name, start);
{from any user, accept a 'start' request]
for the duration of the conversation:
in(server, U, r:request)
{from user 'U', accept any request (except for 'start')]

users execute:
initially:
out(server, me, start);
for the duration of the conversation:
out(server, me, request).

2.5.2 Node Allocation: Inverse Structured Naming. As a refinement to the simple
idle-node allocation scheme discussed above, task-generators may need to direct
tasks to specific nodes in some cases and to any idle node in others. Network
node i executes:

in(idle, i, j:job-descriptionj;
execute job “j “.

To direct task “K” specifically to node i:

out(idle, i, k);

to direct task “k” to any idle node:

out(idle, n:integer, k).

2.5.3 Reminder Messages: Time- Uncoupling and Inverse Structured Naming.
Consider the following routine:

def REMINDER
[now = current date and time:
in(tick) =>

[now++; [increment the current time]
in(msg, now, s:string) =>
print string s

1

When REMINDER is started-we assume that it is one component of an and-
statement, some of whose other components need to use it-“now” is initialized
to the current date and time. (We assume that both are encoded as a single
integer, but only for maximum simplicity of the presentation. Date and time
could as well have been represented as separate fields and updated appropriately.)
REMINDER now waits for ticks. Whenever the singleton tuple “tick” appears
in TS, it is withdrawn and the value of “now” is incremented. After each
incrementation, REMINDER looks for every tuple in TS whose first component
is “msg” and whose second component is the current date and time. Each such
tuple is withdrawn, and its third component is printed.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 97

The statement out(tick) is executed in response to (or, is the logical equivalent
of) a hardware clock-interrupt. REMINDER is a representative interrupt-han-
dler. Correct realtime response depends, of course, upon scheduling policies
implemented in the kernel. It will be useful to allow hardware-determined
priorities to be associated with in() statements (as, e.g., they are associated with
device modules in the Concurrent language Modula [27]), but we will not discuss
this here.

REMINDER is the basis of a reminder-message system that works as follows.
If I want to be reminded of “s” on date-and-time t, I execute out(msg, t, s). Thus,
for example,

out(msg,
at('June 5, 2:50PM'),
'Faculty meeting in ten minutes. Beat it.'

“at()” is a function that translates a date-and-time specifying string into an
equivalent internal representation as a single integer. (at() needs to be able to
read the current time in order to do this; we discuss how to read the current time
in Section 2.6.2.) On June 5 at 2:50 PM, REMINDER will fish this tuple out of
TS and print the specified message. (Note that TS acts in this case as a content-
addressable file system. We discuss some implications in Section 2.7.)

Suppose now that date-and-time is represented internally not as a single
integer but as a series of fields-year, month, date, hour, minute, set, ms. In this
case,

out(msg,
at('June 5, 2:50PM'),
'Faculty meeting in ten minutes. Beat it.'
)

is equivalent to

out(msg,
84, 6, 5, 2, 50, 0, 0,
'Faculty meeting in ten minutes. Beat it.'

(Note that we allow a function to return a tuple.) REMINDER will withdraw
and print this message only if the user is logged on at 2:50 on June 5. Suppose
instead that the message should appear some time on June 5, rather than at 2:50
precisely. In this case we can write:

out(msg,
anytime-on('June 5'),
'Faculty meeting at 3:00 today.'

and “anytime-on()” can produce the following translation:

out(msg,
83, 6, 5, i:int, j:int, k:int, l:int,
'Faculty meeting at 3:00 today.'

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

98 l D. Gelernter

Plits includes a specialized form of restricted-input statement. SR includes a
restricted-input statement that is more general than Linda’s in()-statement
actuals in allowing arbitrary boolean expressions to be enforced over input
parameters, but less general in that, since SR does not allow distributed naming,
the restricted-input statement cannot be used to steer parameters to certain
nodes and away from others. None of the other languages surveyed here allows
the equivalent of inverse structured naming.

A larger example of the use of time-uncoupling, as well as of continuation-
passing and structured names, is given in the Appendix.

2.6 Examples Using read0

2.6.1 Global Variables: Distributed Sharing. A checkers-playing program, imple-
mented on the Arachne network computer, contains multiple processes that
search the tree of future game states in parallel. Given parallel processes i, j, and
k, processes j and k are to be stopped if and when they are known to be exploring
the consequences of a less-good move than i has already found. Process i must
notify j and k when this is so.

If Arachne allowed shared variables between processes, the value of the best move found
so far could be put in a global location. However, lacking global memory, we arrived at a
different solution. [lo]

Linda allows the simple solution to be programmed directly. To read the value
of best-move:

read(best_move, m:move).

To change the value of best-move:

in(best_move, old_move:move);
out(best_move, new-move).

(The code actually required by a distributed game-playing program would be
considerably more complex than this.)

2.6.2 Delay Statement: Structured Names and Distributed Sharing. A global
clock might be stored in TS in the form of a clock, time-value tuple. Assume that
time values are integers and that each tick increments the clock by one. To read
the clock, processes execute
read(clock, now:integer).

To write the clock, the clock process executes

in(clock, now:integer);
out(clock, now+l).

Processes might find a delay statement useful, where DELAY(d) delays the
executing process for (at least) d time units. A conventional implementation of
a delay service might send delay requests to a central server that stores them on
a wake-up-time-ordered queue. This solution is simple enough to implement, but
there are simpler solutions in which the request queue is distributed throughout
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 99

TS. DELAY is the following calling routine:

def DELAY(d:integer)(delay for at least d ticks]
[read(clock, now:integer);

out(delay-until, now+d, me);
in(me)

At each clock tick, the wake-up server increments the clock and awakens all
processes delayed until “now”:

in(tick) =>
(update the clock]
in(clock, now:integer);
out(clock, now+l);
(awaken processes delayed until time = now+11
in(delay-until, now+l, who:name) => out(who)

(Under some circumstances, the following is even simpler:

def DELAY(d:integer)
1 read(clock, now:integer);

read(clock, now+d)
I

The first read() statement consults the clock and assigns the current time to
“now”. The second specifies a structured name that will match the clock tuple
and cause the read() statement to continue when the time reaches now +d. At
every tick the wake-up server simply increments the clock. This solution will
work correctly, though, only if the clock period is long relative to the amount of
time it takes to execute an in() followed by an out(). Otherwise the clock process
may remove tuple (c 1 oc k , t) from TS before all read (c 1 oc k , t) statements
have had a chance to see it-in which case those read() statements that have
not seen it are stuck forever.)

2.7 Time Uncoupling, Tuple Persistence, and File Systems

Space-distributed computing is an innovation, and its investigation has barely
begun. Time-distributed programming languages in Linda’s sense are likewise
unfamiliar, but time-distributed computing itself is nothing new. Communication
between time-disjoint programs has long been provided for by file systems. There
is also a linguistic model for time-distributed communication in any routine that
retains state between time-disjoint invocations-coroutines, generators, proce-
dures with Algol own variables, monitor routines with access to permanent
monitor variables, and so on.

In Linda, extension of a linguistic model into fully space-distributed computing
results in its extension into time-distributed computing as well; the linguistic
aegis now covers certain filing functions that are traditionally extra-linguistic.
Generative communication logically encompasses a tuple-structured, content-
addressable file system. But the extent to which it is desirable or practical to
incorporate filing functions in Linda is not yet clear. At present, we assume that
when all processes of a distributed program have completed, whatever tuples
generated by that program remain in TS will be deleted, with two exceptions:

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

100 l D. Gelernter

tuples whose first names are in the system’s name space and tuples whose first
names appear on a “save” list specified by the programmer.

2.8 Summary and Conclusions

We noted at the start that generative communication results in a number of
properties that distinguish Linda from other languages. We summarize and
reiterate here.

Distributed naming. None of the other surveyed languages supports distributed
naming. If multiple, identical, space-disjoint servers exist in a network, client
processes must refer to each under a different name, or send requests to a
concentrator process that sends them onward to the distributed servers. Note
that the latter scheme imposes centralization in a distributed environment on
linguistic grounds.

Time uncoupling. None of the other surveyed languages supports time-uncou-
pling in Linda’s sense. Communication between time-disjoint processes is sup-
ported in other systems by the file system, not by interprocess communication
mechanisms.

Distributed sharing. None of the other surveyed systems supports distributed
sharing. Variables shared between disjoint processes are implemented by proc-
esses or modules.

Continuation passing. Linda, Plits, and SR all support continuation passing.
Continuation passing style is to be contrasted in the systems domain to input
guard style. Input guard languages admit to the server’s address space only those
requests that may be served immediately. Blocked requests, and consequently
blocked processes and blocked-process queues, are the domain of the kernel and
are inaccessible to the programmer. (Note that SR resembles the noncontinuation
languages in providing input guards, and relying on them in presented examples,
for resource-server implementation. Plits’ strategy for programming request-
queue problems is not clear.)

Structured names. None of the other surveyed systems supports structured
naming in Linda’s sense (although Plits and SR both include restricted-input
statements).

Linda’s weaknesses stem from its strengths: programmers are required to
implement structures such as calling routines and queue-managing filters pro-
vided for them in other languages. Properties such as distributed naming and
sharing make Linda inherently less secure than other languages: care must be
taken to prevent unauthorized access to stored tuples. Finally, Linda presents
difficult and novel implementation problems, particularly in a distributed envi-
ronment. One central problem dominates the implementation question: How is
TS to be implemented in the absence of shared memory? We address this question
in Part II.

Several important topics have been omitted in this survey, and, in conclusion,
we mention some of them briefly. Modularization is important in the construction
of large distributed programs, and Linda supports it; the necessary mechanisms
are discussed in [15]. Type-checking is also particularly important in building
large systems. The definitions above do not require that a given name be used

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda - 101

with only one type of tuple; the two statements out (P , FALSE) and out (P ,
10) may legitimately appear in the same program. This flexibility is sometimes
useful, but it makes runtime type-checking impossible. A process that executes
in(Q, i : integer) when it meant to say in(Q, i : char) is in danger of
hanging forever. It would, however, be easy enough to allow user programs that
so desire to run in a “type-checked” mode, in which the kernel signals an exception
whenever a tuple and a blocked in() statement specify the same first name but
do not match because of type incompability. Dynamic process creation is the one
capability of the generative communication operators themselves that we have
not discussed. Briefly, any side-effect-free expression may appear in a generated
tuple, and tuples are added to TS in unevaluated form. As soon as a tuple enters
TS, evaluation of all its unevaluated components begins simultaneously. Thus
the statement out (P , f (x)) generates a new process; its name is “P” and it
executes f (x) . If f(x) returns an integer, the result tuple may be removed
from TS by the statement in (P , i:integer). (IfinOexecuteswhile f(x)
is still under evaluation, in() blocks until evaluation is complete.) Dynamic
process creation is a powerful tool that entails difficult implementation problems,
discussed in [131.

3. PART II: A VIRTUAL LINDA MACHINE ON A NETWORK COMPUTER

We are concerned here with aspects of the implementation of Linda on networks,
particularly on network computers. Our only initial assumption about the target
machine is that all of its nodes are essentially equal in power. Study of the Linda
implementation problem leads in top-down fashion, however, to a class of
interconnection topologies and communication architectures that are well suited
to a Linda-supporting network computer.

The techniques described below were designed for and partially implemented
on the SBN network computer. We do not, however, discuss this implementation,
but the principles behind it. The following is a general outline; a full treatment
appears elsewhere [161.

3.1 A Virtual Linda Machine

We propose to think of out(), in(), and read() as the primitive instructions of a
virtual Linda machine (VLM) that is implemented by the hardware, the network
communication kernel, and the compiler in cooperation. (The communication
kernel is the program resident on each network node that implements internode
communication.) Implementing relatively high-level computation operators as
virtual-machine primitives is an established technique, but implementing com-
munication operators in analogous fashion is not, and requires some introduction.
Communication operators are usually regarded as tools provided by the system.
But we intend to write operating systems in Linda. An implementation of Linda’s
communication operators must therefore underlie the system-must be provided,
that is, by the hardware and the communication kernel.

In constructing a distributed VLM, the central problem is, as noted, how to
implement TS in the absence of shared memory. This question resolves into two
subproblems: how to find tuples (the major issue) and where to keep them.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

102 l D. Gelemter

3.2 How to Find Tuples: The Dynamic Global Name Space

A name space that is global to all modules of a distributed Linda program makes
it impossible to resolve global-name references statically before runtime. Suppose
a distributed program is running on j network nodes and out(+t) is executed on
one of them at time q. (Recall that if-t is an in() or read() statement’s parameter
list, +t is any tuple that can be legally received by that in() or read() statement.)
At time q, processes are suspended at in(+) statements on some (possibly empty)
subset S of the j nodes occupied by the program, but it is impossible to determine
the identity of S at compile- or load-time. Some method must therefore be
provided for matching +t tuples to in(-t) statements at runtime, or, in other
words, for implementing a dynamic global name space.

Providing such a name space has an important additional benefit as well: it
makes it unnecessary, so far as name resolution goes, to assign modules of a
distributed program statically to network nodes. Allowing the network computer’s
operating system maximal freedom to locate and relocate distributed jobs within
the network is in fact an important goal in itself. Static mapping of modules to
nodes requires that distributed programs be relinked each time they are run and
rules out the possibility of new modules being generated dynamically by runn.ing
programs, making it impossible for the system to reposition modules in the
network in response to hardware failure, changing resource requirements, or a
changing network environment. Enforcement of a static mapping policy thus
requires ipso facto the surrender of a significant portion of a network computer’s
potential power and flexibility-a loss roughly comparable to what might be
engendered by a conventional system’s requiring object modules to reside at
fixed, absolute addresses.

Our VLM’s first requirement, then, is to provide a dynamic global name space.
Runtime resolution of name references may be handled in either of two general
ways. Name-node mapping information may be concentrated in central directory
nodes, or it may be distributed network-wide, for example by means of a network-
wide broadcast.

The maintenance of a central directory might lead to congestion and vulnera-
bility; it is furthermore inappropriate as a kernel function. Ideally, the kernel is
a small, simple program basically identical on every node. Distinguishing certain
kernels as directory servers, and requiring all others to submit service requests
to these, involves the kernel in an undesirable degree of complexity and special-
ization. If the kernel is to implement the global name space-and it must, because
Linda is to be supported directly by the kernel-then distributed storage of
name-node mapping information is an attractive approach.

The combined weight of these design decisions is to make the mapping of
logical to physical addresses a function of the (virtual) machine itself. Concep-
tually, program modules and the names they define may be mapped to nodes and
moved between nodes as freely as pages may be moved among page frames in a
paged memory system. To support this flexibility, the paged machine translates
virtual to physical addresses in the hardware on a per-reference basis. The
analogous function in the VLM is the translation by the communicltion kernel
of tuple names to network addresses on a per-reference basis. Against the
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 103

potential benefits of this flexible architecture must be balanced the cost and
complexity of implementing internode communication and runtime resolution of
name references. The power of the VLM will be realized only if the communica-
tion kernel can be implemented efficiently. We address specifically the issue of
efficient name resolution in the remainder of this section.

We define elsewhere [16] a method of network state storage called “uniformly
distributed,” where “network state” is the collection of all data descriptive of any
particular node that may be of interest to the network generally. The fact that a
tuple with name M is currently required by an in() statement on node i is an
instance of a state datum.

Informally, a network state storage scheme is uniformly distributed if no node
stores any more of the current state than any other node. Uniformly distributed
state storage schemes fall into a discrete spectrum. At one end of the spectrum,
state data is broadcast to every node, and each node maintains its own complete
copy of the state of the entire system. At the other end, state information remains
local to the node on which it originates. In this case, to discover the current state,
a given node must broadcast a query to the entire network; nodes respond to this
broadcast query with information extracted from their local states.

If state data is read much more frequently than it is written, then clearly the
first scheme is more efficient in terms of total communication and processor
bandwidth expended by all reads and writes. In this scheme, writing is expensive
(a broadcast is required), but reading is cheap. If writes are much more frequent
than reads, then the second scheme will be more efficient. If, on the other hand,
reads and writes occur with roughly equal frequency, then a third scheme,
intermediate between the first two, is more efficient than either. (“Roughly
equal” has a precise definition: On an N-node net, roughly equal means equal
within a factor of N’/2 - 1, as discussed in the general treatment [16].) In the
intermediate scheme, assuming an N-node network, writing the network state
consists of broadcasting state data to a prearranged set of N1j2 nodes, called the
write set. Reading the state consists of broadcasting a query to a different set of
N1/2 nodes, called the read set. If the read set is chosen correctly, its nodes will
store among themselves the entire network state. This condition is assured if
each node’s read set has a non-null intersection with each other node’s write set.

Consider now the problem of implementing in() and out(). By definition, the
operation writestate(-t,j) will add to the network state the datum “-t is available
on node j”--in other words, that in(-t) has been executed on node j and that
some instance of +t is accordingly desired. The operation readstate will
consult the network state and return the identity of some node on which in(-t)
has been executed and on which an instance of +t is accordingly needed. If there
is no such node, the readstate request will remain outstanding until there is
such a node and will then return that node’s identity. (Note that “readstate” and
“writestate” are internal to the communication kernel. They are not part of
Linda.) Abstractly, then, node i’s kernel may implement an out(+t) operation as
follows:

j = readstate(
send +t to node j.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

104 l D. Gelernter

in(-t) as executed on node j is implemented

writestate(-t, j);
await receipt of +t

Note that at this level the implementation of in() and out() is not atomic. As
a result, two instances of +t may be sent to the same node j, in which case the
second instance must be reinserted into the global buffer.

Let “ -t-state” refer to all data in write sets pertaining to the whereabouts of
-t-tuples (i.e., of in(-t) statements) in the network. If in() and out() are executed
with roughly equal frequency-this seems to be a reasonable assumption, al-
though there are complicating factors, which we discuss below-then the net-
work’s -t-state will be read and written with roughly equal frequency. Given that
the -t-state is to be stored in uniformly-distributed fashion, writestate(-t, i) and
readstate are accordingly best implemented using the intermediate N’j2-node
broadcast technique.

Our basic tools for implementing in() and out() are readstate() and write-
state(). readstate() and writestate() may be implemented using any state storage
scheme on any type of network, large or small. The N’j2-node broadcast technique
in particular suggests, however, one class of network topologies. Network-com-
puter designers are generally free to specify an interconnection topology; design-
ers of larger networks are not. The remainder of the discussion therefore applies
specifically to network computers.

We describe the class of topology we have in mind as the WD wrap-around
hypercubes, where “wrap-around” refers to each dimension of the network’s being
connected either as a ring or by a broadcast bus, so that all nodes interface to
the network in the same way; there are no edge nodes. Linda was developed, as
noted, for the SBN network computer, which used a two-dimensional represent-
ative of this class. SBN was a linked torus-a square end-around grid in which
each row and each column loops back on itself; each node has four nearest
neighbors. In the following, we describe the Linda implementation designed for
SBN. It is applicable to any square grid or, with appropriate simple generaliza-
tions, to any even-dimension WD wrap-around hypercube.

For each node i, i’s write set is its row and i’s read set is its column. When
in(P. . .) executes on node j, j’s kernel executes writestate(-P, j) by sending each
of the N112 nodes in its row a message reading “a tuple labelled ‘P’ is needed on
node j”. This process is referred to as constructing a P-in-thread. (Note that we
deal at this point only with simple names. Structured names are discussed below.)
When out(P. . .) executes on node i, i’s kernel sends to each of the N1’2 nodes in
its column a message reading “a tuple labelled ‘P’ is available on node 2’; this
process is called constructing a P-out-thread. When a P-in-thread either inter-
cepts or is intercepted by a P-out-thread on node k, a notification message is
generated on node k and sent to node i instructing i to send tuple (P, . . .) to node
j. When and if the tuple is delivered, accepted, and acknowledged, both P-in-
thread and P-out-thread are removed. Some other (P, . . .) tuple may, on the
other hand, arrive at node j before node i’s does. If so, node i’s tuple is not
accepted and i’s P-out-thread remains in place. (Figures 7 and 8.)

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 105

u P-&t-$hread-
dI

I
out(P...)

Fig. 7. out (P . . .) executes; in (P . . .) has
already executed; a P-out-thread looks for a
P-in-thread.

Fig. 8. in(P . . .) executes, but out (P . . .)
has already executed, so a P-in-thread looks
for a P-out-thread.

Note that an out-thread registers data in all nodes of a read set just as an in-
thread does in a write set. But the data recorded in an out-thread are treated as
a persistent state query, not as part of the network state.

We have described an implementation technique for ino and out() that is
optimal if in() and out() are equally frequent within a factor of IV’12 - 1. The
technique requires that an in-thread be constructed each time in() executes and
an out-thread be constructed each time out() executes. The overhead of con-

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

106 l D. Gelernter

strutting in- and out-threads may, however, be substantially reduced in the
following ways. First, once node i has determined that tuple (P. . .) is needed on
node j, it associates “P” with ‘7” in a name-address cache and sends all
subsequent (P. . .) tuples directly to j, bypassing out-thread construction until j
rejects one such tuple. (This scheme is analogous to the runtime conversion of
logical to physical addresses in a virtual memory system.) A related factor
decreases in-thread construction. As discussed in Part I, active procedures are a
basic structure in Linda programs. Active procedures are headed by in() state-
ments to which execution returns repeatedly. In-threads associated with these
in-statements need not be repeatedly torn down and reconstructed, they may be
left in place for as long as the associated procedure block remains invocable.

read() statements are implemented precisely as in() statements are, so far as
in-threads go. But regarding the associated out-threads there are two possibilities.
Suppose read(--t) executes on node j and out(+t) has been executed on node i.
Execution of read(+) might cause a copy of +t to be transported to j, leaving
the original undisturbed on i. On the other hand, the original might itself be
transported to j, in which case subsequent read(-t)s will find it there-not, in
other words, on its node-of-origin i, but on its node-of-last-reference j. In the
former case, the +&out-thread remains undisturbed with its origin on i. In the
latter, i’s +&out-thread is torn down and j must construct a new one with itself
as origin. Clearly, the second scheme involves greater thread-construction over-
head than the first, but it has what might be the desirable property of distributing
tuples to the network sites where they are needed, rather than leaving them
forever at their creation sites. A node that stores a collection of tuples that are
referenced from many points in the network is a potential bottleneck. Note that
the first scheme has the effect of unbalancing queries and updates over the
--t-state by increasing in-thread construction (updates) relative to out-thread
construction (queries). If this scheme is to be implemented and a significant
imbalance is anticipated, the size of read and write sets may have to be adjusted
as described in [16] in order to maintain good performance with uniform distri-
bution.

Threads as described above perform only simple name matching, ensuring that
a tuple is delivered to an in0 statement whose first component matches the
tuple’s. But that in() statement may in fact specify a structured name, and if the
arriving tuple fails to match all fields of the structured name identically, it will
be rejected and must be retransmitted to another candidate in() statement. A
more efficient implementation requires the propagation not just of names but of
structured names in in-threads. A structured name is propagated as a list of
fields that a tuple must match in order to be acceptable to a given in() statement;
out-threads continue to propagate simple names only. Notification messages
generated when in- and out-threads intersect contain a copy of the structured-
name list associated with the in() thread, and no tuple that fails to match a
structured name is transmitted.

3.3 Buffering

We close with a brief discussion of the second of the two questions raised at the
start of Part II: Where should tuples in TS be stored?
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 107

The VLM is required to simulate Linda’s infinite global buffer. System buffer
space must expand as needed, buffer space must be provided for undelivered
tuples. These requirements are satisfied by making the allocation of buffer space
largely the function of compiler-generated code.

Allocation of buffers for arriving tuples is in principle a simple extension of
the allocation of activation frames in the implementation of sequential languages.
When in(P. . .) executes, a buffer for the actuals is allocated on the execution
stack of the process executing in(), and is referred to as buffer P. An arriving
tuple is stored in buffer P after match and delivery have occurred. Outbound
tuples are stored in per-process heaps maintained by compiler-generated code
until they are removed from TS. Header information required by the communi-
cation system-dealing with the length of the tuple, its logical address, and other
basic control characteristics-is prefixed to the buffered outgoing tuple by
compiler-generated code.

If a process terminates with undelivered tuples, responsibility for the buffers
in which they are stored devolves on the kernel, and these buffers are not
deallocated until their contents have been delivered. (When all processes of a
given distributed user job have terminated, however, that job’s undelivered tuples
may be erased, except for tuples whose first names appear on the “save” list or
are imported from the system’s name space, as mentioned earlier.)

3.4 Hardware Failures

The semantics of Linda in the presence of hardware failures and the implemen-
tation of TS in a robust way are important issues that are now under study. We
include a few introductory comments only.

First, “reliable message delivery” is not per se at issue in Linda, because Linda
does not undertake to deliver messages. out(+t) works correctly if and only if
subsequent to execution +t has been inserted in TS. out() fails only if the node
on which it is executed crashes before +t can be handed safely to the kernel on
the same node. +t may subsequently be lost or destroyed, but this represents a
failure of TS, not of out(); no bad status or failure exception can or should be
reported to the process that executed out(). Similarly, in(+) fails only if an
instance of +t exists in TS but cannot be found. If an instance of +t used to exist
but has been lost, it is once again TS and not in() that has failed. What are the
chances, then, that a +t inserted by out() will be safely delivered to an in(+)?
The system will not guarantee delivery, but should promise highly probable
delivery. A system in which reliable delivery is critical may implement (in Linda)
one of the handshake protocols that allow reliable communication over unreliable
channels. We do not anticipate that many Linda programs will do this. In a
usable implementation of TS, failures will be rare enough not to have to be taken
into account in the course of normal program development-in the same sense
in which system failures, file crashes, and so on take place but do not impede
normal program development on a useful conventional installation.

Maintaining TS reliably is therefore the central issue, and it is made up of two
subproblems: remembering where tuples are and remembering the tuples them-
selves. Note that the N1/* broadcast scheme for remembering tuple whereabouts
is in general, because of its substantial redundancy, the potential basis of a highly

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

108 l D. Gelernter

reliable system. A node in this scheme stores data on the whereabouts of +t and
-t tuples; its +t data are identical to the +t data stored by the nodes above and
below it in the grid, its -t data to the --t data stored on the nodes to either side.
A node that fails and is rebooted can therefore restore the correct tuple-
whereabouts state by appropriate queries to neighbors; while a node is down, out-
and in-threads must be routed around it. In general, an entire row or column
must fail for tuple-whereabouts data to be lost.

The N”’ broadcast scheme is redundant with respect to tuple-whereabouts
data but not, as we have described it, to the values of the tuples themselves. Each
is stored, until an in() statement seeks it, on the node where its associated out()
was executed. If that node fails, the tuple is lost. We are currently investigating
the ramifications of a scheme that would be equally redundant with respect to
tuples and tuple whereabouts: each tuple added to TS by out() would be broadcast
to every node in the executing node’s read set (i.e., to every node in the executing
node’s column on a grid). To assure the atomic character of out() and in(), all
in(-t) requests would still be directed to the node where out(+t) executed, only
this tuple-keeper node is authorized to satisfy in(-t) requests, and once such,a
request is satisfied, +t is deleted from every node in the read set. But if the tuple
keeper tails, any other node in its read set may become the tuple keeper in its
stead. Every node in the read set must fail before a tuple is lost. This scheme
makes heavy space and communication-bandwidth demands on the network, and
presents some complex implementation problems. On the other hand, it is highly
desirable with respect to reliability, and has two other major advantages as well.
First, it increases the efficiency of read(): N”’ copies of each tuple are available
in the network for reading purposes. Second, it increases the efficiency of
implementing structured names: an in(+) with a structured name can check
with any node in the&read set to determine whether a +t matches; it need not go
to the unique tuple keeper to find out.

4. CONCLUSIONS

We have discussed generative communication and one technique for implement-
ing it on network computers. The technique we developed has attractive prop-
erties relative to other possibilities-but we have not demonstrated, needless to
say, that is is acceptably efficient in absolute terms. Generative communication
might place unacceptable burdens on network communication systems. No evi-
dence to the contrary will be available until implementation projects now in
progress are more advanced.

We do nonetheless find Linda well worth pursuing. After all, thinking up good
uses for ever-more-plentiful basic resources-two of which are short-haul com-
munication bandwidth and communication-processor power-is contemporary
system design’s fundamental problem. We are willing to bet that it is a mistake,
at least in the long term, to allow our thinking to be cramped by preconceptions
about what is and is not implementable. If we are mistaken in our optimism,
then at least we will have examined some interesting problems in a fresh light.
We insist only (and others will dispute the claim) that languages do not become
interesting because we can implement them. Implementation problems become
interesting when new languages seem worthy of study.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 109

A thread-addressing, packet-switched communication kernel to support Linda
was implemented in part on the 4-node prototype SBN’network computer at
Stony Brook. But SBN’s unsophisticated hardware proved unsatisfactory, and
the project is quiescent. Linda now runs on an Apollo workstation at Yale; this
uniprocessor implementation will be used to test the language’s utility and
expressivity and to study the runtime behavior of distributed programs. In a joint
project involving the Yale Linda group and researchers at AT&T Bell Labs,
Linda is being implemented on a network computer designed and built at Bell.
The results of this project will tell us a great deal about whether generative
communication can be made to work efficiently.

APPENDIX 4.1. Deadlock Detection in Two-Phase Locking: Time Uncoupling,
Continuation Passing, and Structured Names

In the following we discuss an example that is short and fairly simple, but not
trivial. Following it will require brief contemplation of two-phase locking, which
is not the subject of this report. We include it nevertheless, to illustrate the way
in which Linda encourages simple solutions that are much harder to express and,
correspondingly, less likely to occur in other languages.

Consider a set of database transaction processes (T, U, V. . .) and a set of
data locks (A, B, C . . .). T ransaction processes set and clear locks according to
the two-phase locking protocol [7]. An access graph for this system is a directed
bipartite graph (VI, Vz, E). Nodes in VI correspond to transaction processes and
nodes in V2 to locks (see Kohler [22]). Let t E VI and 1 E V2. E(t, 1) (an edge
from t to I) means that transaction t is currently requesting lock 1. E(1, t) means
that lock 1 is currently assigned to transaction t. A deadlock exists in the system
iff there is a cycle in the access graph.

The Linda solution detects deadlock by turning the set of transaction processes
and lock processes into a life-size (as it were) transaction graph. Each process
acts as a node in the graph, and processes exchange tokens in order to detect
cycles. The solution depends upon the fact that at any given time (i) a transaction
node may have more than one incoming edge but only one outgoing edge (because
a transaction may own several locks but have no more than one unfilled lock
request outstanding), and (ii) a lock node may likewise have more than one
incoming edge but only one outgoing edge (because many transactions may be
requesting a lock, but only one transaction owns it). The solution works generally
as follows:

transactions execute: in(from all currently-owned locks);
out(to unique currently-requested lock).

locks execute: in (from all currently-requesting transactions);
ou t(t0 unique current-owner transaction).

A transaction T requests a lock by sending its name to the manager of the lock
it is requesting. It then waits at an in() statement, expecting some name n in
return. If it receives n and rz = ok, then T now owns the lock and may continue.
(“ok” is a reserved name that indicates awarding of a lock; no transaction may
be named “ok”.) If, on the other hand, it receives n and n = T, there is a deadlock
in the system: T’s name has travelled a cyclic path through the graph and

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

110 l D. Gelernter

returned to its node of origin. At this point some corrective action must be taken,
but we are not concerned with what it is. If T receives n and n is neither “T” nor
“ok”, T forwards n to the manager of the unique lock it is currently requesting
and reexecutes the in() statement.

Transaction S will execute:

to acquire lock B:
if (not LOCK(S, B)) there exists a deadlock;
to free lock B:
UNLOCK(B).

LOCK() is a calling routine that returns a value, just as a called routine might.,

def LOCK(T:name, A:name)
[n:name
& [out(get, A, T); {enter a request in T's name for lock A]

[done:boolean = false
& do

[[await word from A or
in(T, var n);
done=(n==ok)or(n==T);
if (not done) out(forward, A, n)]

while (not done)
1 ; val(n ==T)(the value of LOCK is the value of this

comparison)]
I

def UNLOCK(A:name)[out(free, A)]

The lock manager for lock A executes:

[LOCK-DECL

where

def LOCK-DECL
[free:boolean = true
& 0wner:name
b declarations for a request queue; frames of type name

I

def LOCRENQUEUE(L:name)
[in(get, L, requestor:name); [accept a lock request]

[n:name
& [if (free) (award lock to the requestor:]

[owner = requestor;
free = false;
n = ok] {prepare to notify the new owner)

e 1 s e [add “requestor” to the request queue;
[pass the blocked requestor's name to the current
owner:]

n = requestor];
out(owner, n)]

I
def LOCK_FORWARD(L:name) =

[in(forward, L, n:name);
out(owner, n)]

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Generative Communication in Linda l 111

def LOCK_DEQUEUE(L:name) =
[in(free, L);

[head:name
& [if the request queue is empty

free = true
else [head = head of the request queue;

out(head, ok); (notify the new owner]
owner = head;
delete request queue head 1

1 1

This example illustrates several properties.

Time uncoupling. LOCK-FORWARD may execute out(owner, n) without
ascertaining whether an in(owner, . . .) statement will ever be executed.

Continuation passing. Continuation passing is extended in this example
through a chain of length bounded by the number of nodes in the transaction
graph.

Structured naming. Structured names allow a family of names-here, “get,A”,
“forward,A”, and “free,A”-to be generated from one.

None of the other languages surveyed here allows the generation of multiple
related names in Linda’s sense.

ACKNOWLEDGMENTS

Thanks to Professor Arthur Bernstein, who directed the thesis in which Linda
was first described, and to the referees (particularly the indefatigable “A”) for
useful, lucid comments. Mauricio Arango was central to the Linda implementa-
tion project at Stony Brook. Without his enthusiasm and expertise, the work
described here could never have been accomplished. Nick Carrier0 plays a
similarly pivotal role in the implementation work at Yale. Thanks also to Suresh
Jagganathan and Todd Morgan for their work at Stony Brook and to Brian
Weston for his at Yale. So much for technical assistance; it was Jane Backus’s
metatechnical contribution that was decisive.

REFERENCES

1. ANDREWS, G. Synchronizing resources. ACM Trans. Program. Lung. Syst. 3,4 (Oct. 1982), 405.
2. BRINCH-HANSEN, P. The programming language Concurrent Pascal. IEEE Trans. Softw. Eng.

SE-l, 2 (June 1975), 199-207.
3. BRINCH-HANSEN, P. Distributed processes: A concurrent programming concept. Commun. ACM

21, 11 (Nov. 1978), 934.
4. COOK, R. Mod-a language for distributed programming. In Proceedings 1st International

Conference on Distributed Computing Systems, (Oct. 1979), 233-241.
5. DEMINET, J. Experience with multiprocessor algorithms. IEEE Trans. Comput. C-31, 4 (Apr.

1982), 278-287.
6. U.S. Dept. of Defense. Reference Manual for the Ada Programming Language. July 1982.
7. ESWARAN, K., GRAY, J., LORIE, R., AND TRAIGER, L. The notions of consistency and predicate

locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624.
8. FEHLING, M., AND ERMAN, L. Report on the 3rd Annual Workshop on Distributed Artificial

Intelligence. ACM SZGART Newsl. 84 (Apr. 1983), 3-12.
9. FELDMAN, J. High-level programming for distributed computing. Commun. ACM 22, 6 (June

1979), 353.

ACM Transactions on Programming Languages and Systems, Vol. ‘7, No. 1, January 1985.

112 ’ D. Gelernter

19. FINKEL, R., AND SOLOMON, M. The Arachne distributed operating system. Tech. Rep. 439,
Univ. of Wisconsin at Madison, Computer Science Dept., July 1981.

11. GELERNTER, D., AND BERNSTEIN, A. Distributed communication via global buffer. In Proceed-
ings ACM Symposium on Principles of Distributed Computing, (Aug. 1X%2), 10-18.

12. GELERNTER, D. An integrated microcomputer network for experiments in distributed program-
ming. Ph.D. dissertation, SUNY at Stony Brook, Dept. of Computer Science, Oct. 1982.

13. GELERNTER, D. Three reorthogonalizations in a distributed programming language. Tech. Rep.,
Yale Univ., Dept. Computer Science, Aug. 1983.

14. GELERNTER, D. A note on systems programming in Concurrent Prolog. In Proceedings 1984
International Symposium on Z.ogic Programming, (Feb. 1984).

15. GELERNTER, D. Symmetric programming languages. Tech. Rep., Yale Univ., Dept. Computer
Science, July 1984.

16. GEL~NTER, D. Global name spaces on network computers. In Proceedings 1984 International
Conference on Parallel Processing, (Aug. 1984).

17. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21 (Aug. 1978), 666-677.
18. ICHBIAH, J.D., et al. Rationale for the design of the Ada programming language. SZGPLAN Not.

14,6, Part B (June 1979).
19. KAHN, G. The semantics of a simple language for parallel processing. In Proceedings ZFZP

Congress 1974. p. 471.
20. KERNIGHAN, B., AND RITCHIE, D. The C Programming Language. Prentice-Hall, Englewood

Cliffs, N.J., 1978.
21. KIEBURTZ, R., AND SILBERSHATZ, A. Comments on communicating sequential processes. ACM

Trans. Program. Lang. Syst. 1, 2 (Oct. 1979), 218-225.
22. KOHLER, W. Overview of synchronization and recovery problems in distributed databases. In

Proceedings Fall COMPCON 1980.433-441.
23. LISKOV, B. Primitives for distributed computing. In Proceedings 7th Symposium on Operating

System Principles, (Dec. 1979), 353.
24. SCHNEIDER, F. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst. 4,

2 (Apr. 1982), 125-148.
25. SHOCH, J., AND HUPP, J. The “worm” program-early experience with a distributed computa-

tion. Commun. ACM 25,3 (Mar. 1982), 172-180.
26. WARREN, D., AND PEREIRA, L. Prolog: The language and its implementation compared with

Lisp. In Proceedings ACM Symposium on Artificial Intelligence and Programming Languages,
(Aug. 1977), 109.

27. WIRTH, N. Modula: A language for modular multiprogramming. Softw. Pratt. Exper. 7 (1977),
3-35.

Received April 1983; revised July 1984; accepted July 1984

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

