

The Parenscript Common Lisp to JavaScript
compiler

Vladimir Sedach <vsedach@gmail.com>

What Parenscript is not

 Not a full ANSI INCITS 226-1994 (the standard
formerly known as X3J13) implementation in
JavaScript

 Not a Lisp interpreter in JavaScript
 Not a framework, toolkit, UI or AJAX library

What Parenscript doesn't do

 No dependencies or run-time library
 Any JS code produced runs as-is

 No new data types
 No weird calling convention

 Any PS code can call any JS code directly and vice-
versa

 No whole program compilation
 JS code can be produced incrementally

Where is Parenscript used?

 Web frameworks: BKNR, UCW, TPD2,
Weblocks

 Libraries: cl-closure-template, Suave, css-lite,
clouchdb, uri-template

 Many startups and commercial projects

Parenscript history

 March 2005, Manuel Odendahl announces
initial release

 Swallowed up by the bese project in 2006
 Skysheet developers spin Parenscript out as

separate project again in 2007, take over
development, do lots of PR

Similar projects

 Not many options for Common Lisp:
 Jason Kantz's JSGEN (2006, s-exp over JS)
 Peter Seibel's Lispscript (2006?, s-exp over JS)

 Many more options for Scheme:
 Scheme2JS (2005?)
 Feeley and Gaudron's JSS
 Many others

 Moritz Heidkamp's survey of Lisp-in-JavaScript
implementations lists 28!

Use cases

 Lisp at runtime
 No Lisp at runtime

Lisp at runtime

 Compile to inline JavaScript in HTML page
 Stream client-specific JavaScript to browser via

XMLHttpRequest or page loads
 SWANK-based development environment

No Lisp at runtime

 Compile to static files sent to browser
 If done with a runtime, can use all of CL features for

a build/deploy/cache system

 Compile to library to be used by other JS code
 Compile to JS client- and server-side (node.js)

code at the same time
 Deploy JS only
 Parenscript used as static compiler for whole web

stack

Implementation Techniques

What should JS code look like?

 Write CL, but debug JS
 Generated code has to be short, readable,

idiomatic
 ”Optimization” in the context of this talk means

”more readable code”
 What about performance?

 Can only assume that JS compilers try to optimize
for code written by humans (ie – readable and
idiomatic code)

Statements vs Expressions

 In JavaScript, can transform any statement to
an expression by wrapping it in a lambda
 Except for BREAK, CONTINUE, and RETURN

 Many optimizations to avoid lambda-wrapping
possible, depending on combination of special
forms

Function argument lists

 Full Common Lisp lambda lists in JavaScript
 In a way completely compatible with other

JavaScript code

 ARGUMENTS is great
 NULL (argument provided) vs UNDEFINED

(argument not provided)
 Keywords: f(”key2”, value2, ”key1”, value1);

 CL keywords and JS strings both self-evaluating

Macros

 Share the same representation (macro-
function) in CL and PS compilers

 But have different namespaces
 Share same code between client (CL) and

server (JS) even if implementation details
completely different (ex – IO, graphics)
 Without modifying CL code
 PS macros can shadow CL functions

Data structures

 No car/cdr
 Many Common Lisp forms are sequence

oriented (DOLIST, LOOP, etc.)
 Most idiomatic Common Lisp code uses these

forms
 Most code turns out to care about sequences,

not linked lists vs arrays, and works as-is with
JS arrays

Namespace (Lisp-1 and Lisp-N)

 JavaScript is a Lisp-1
 Common Lisp is a Lisp-4

 With macros, Lisp-N

 Parenscript tries to be a Lisp-2 (separate
variable and function namespaces)

 Code can be output unambiguously for lexically
bound names (via α-renaming), but free
variables referring to globals might cause
conflicts

 No thought given to hygiene

Namespace (package system)

 All Parenscript symbols are CL symbols
 Packages can be given prefixes to namespace

in JS:
 foo::bar => foo_bar

 Package system also used for obfuscation
and/or minification

 Exports list used to produce JS libraries with
minified internals and prefixed API names

Namespace (case and escape)

 CL readtable case-insensitive by default, but
can be set to preserve case

 Parenscript recognizes mixed-case symbols
and outputs them correctly

 Simple translation for case-insensitive ones:
 foo-bar => fooBar

 JS reserved chars escaped:
 foo* => foostar

JavaScript dot operator

 Causes confusion
 Some people think it's ok to use it for namespacing

 foo.bar is really (getprop foo 'bar)
 What about foo.bar.baz(foobar)?

 (funcall (getprop (getprop foo 'bar) 'baz) foobar)

 Macros to the rescue:
 (funcall (@ foo bar baz) foobar)

JavaScript dot operator 2

 Why not (foo.bar.baz foobar)?
 Parenscript 1 did it in compilation step

 Turns out this doesn't work well with package
system, breaks symbol macros

 Symbol macros used for a lot of things in
Parenscript 2 compiler

 Possible to do it in the reader
 But ”.” is already reserved for dotted lists
 Dotted lists are evil; remove them from Lisp

Lexical scoping

 Done by using α-renaming to declare variables
in nearest function scope:

(lambda ()

 (let ((x 1))

 (let ((x 2))

 x)))

function () {

 var x = 1;

 var x1 = 2;

 return x1;

}

Lexical scoping: loops

 For variables in loops, JS creates a shared
binding for all iterations, breaking closures

 WITH trick from Scheme2JS:

(dotimes (i 10)

 (lambda () (+ i 1)))

for (var i = 0; i < 10; i += 1) {

 with ({i : i}) {

 function () {

 return i + 1;

};};};

Dynamic scoping

 TRY/FINALLY to set a global variable

(let ((*foo* 1))
 (+ *foo* 2))

var FOO_TMPSTACK7;
try {

 FOO_TMPSTACK7 = FOO;
 FOO = 1;

 return FOO + 2;

}

finally {

 FOO = FOO_TMPSTACK7;
};

Multiple value return

 ARGUMENTS has 'callee' property (function)
 'callee' has 'caller' property (function)
 Functions are JS objects, can attach arbitrary

properties to them
 To return MV:

 arguments.callee.caller.mv = [val2, ...]

 To receive MV:
 others_vals = arguments.callee.mv

Multiple value return 2

 Actually requires more cleanup code than this.
 arguments.callee works even when calling

to/from functions that don't know about
Parenscript (a global ”return value arg”
wouldn't)

 Non-lexical returns (see next slide) with multiple
values easier to implement (but aren't yet)

Control transfer

 JavaScript only supports RETURNing from
innermost function, BREAKing out of innermost
block or loop

 Can implement CL's BLOCK/RETURN-FROM
and CATCH/THROW using TRY-CATCH-
FINALLY in general case

 Optimizations possible depending on special
forms, whether a return value is wanted

Tools and future developments

CLOS

 Red Daly's PSOS library provides CLOS and
Common Lisp's condition and resumable
exception system
 Not part of core Parenscript because it requires run-

time library and introduces new types

 Possible to build up a full Common Lisp in
JavaScript this way using Parenscript as a
cross-compiler

Development environments

 SWANK-based
 slime-proxy

 Non-SWANK
 Numen (V8 only, to be released)

Future directions

 JS implementations have mostly caught on
speed-wise
 But have not, and most likely will not, catch up in

efficient memory consumption

 Would like a full Common Lisp implementation
in JS on the server (V8, Rhino, etc.) and web
browser (Firefox, Chrome, etc.)

