
TinyTalk, a Subset of Smalltalk-76 for 64KB Microcomputers

by Kim McCall and Larry Tesler

Xerox Palo Alto Research Center

Palo Alto, CA 94304

SMALLTALK-76

Smalltalk-76 is an interactive, object-oriented

programming language.

All data structures are represented as objects. For

example, a simple bank account might be represented as an

object with two data fields, name and balance, along with a

set of methods (procedures) to operate upon those fields.

A bank account
name

balance

Each object is an instance of some class. The class

defines the internal structure and the behavior of all its

instances. The object shown above might be an instance of
class BankAccount.

Processing is invoked by sending messages to objects.

Sending a message to an object is very much like calling a

procedure in a procedural language. Among the messages to

which a bank account could respond might be:

balance

deposit:" amount

withdraw: amount

A message consists of an identifying key called a selector and

zero or more arguments. The selectors of the messages shown

above are balance, deposit.:, and withdraw:. Two of those

messages have an argument named amount.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

~ 1980 ACM 0-89791-024-9/80/0900-0197 $00.75 197

The response to a message is implemented by a method

(procedure) which can evaluate expressions, assign to

variables, and/or send further messages in order to achieve

the desired result. A bank account might respond to the

message deposit: amount by invoking the following method:

b a l a n c e , - b a l a n c e + a m o u n t

Each class has a message dictionary which associates a set

of.selectors with a corresponding set of methods. Part of the

message dictionary of class BankAccount might be:

Selector Method

b a l a n c e balance

balance ~- balance + amount d e p o s i t :

w i t h d r a w :
IF balance < amount THEN false

ELSE
balance ~- balance - amount

When a message is sent to an object, the selector is

looked up in the message dictionary of the object's class in

order to find the appropriate method to execute. Thus, there

is an important difference between sending a message in

Smalltalk and calfing a procedure in a procedural language.

The decision of exactly which response is appropriate is left to

the receiver instead of being decided ahead of time by the

sender. The exclusive use of such "generic" procedures

enhances modularization of programs, because the sender of a

message doesn't have to be concerned at all about the internal

structure, or even the class, of the receiver.

Further factorizafion of the representation of data and

methods in the language is facilitated by subclassing. Any

class may be declared to be a subclass of another, thus

inheriting its code and data structure. The subclass can add

further specificity of its own. For example, class

OverdraftBankAccount might be a subclass of BankAccount

that allows overdraft. Each instance could have an extra field,

savingsAcct, to reference another account that could be

tapped in case of an overdraft.

An overdraf t bank account name

balance

sav ingsAcct

Within class OverdraftBankAccount, the method

withdraw: a m o u n t might be defined as:

IF balance < amount THEN

IF savingsAcct withdraw: amount - balance THEN

balance 4- 0

ELSE false

ELSE balance ~- balance - amount.

The above summary is intended only to sketch the barest

essentials of Smalltalk-76. A more complete discussion of the

language can be found in [Ingalls].

Several versions of Smalltalk-76 have been implemented

on minicomputers with 128K bytes or more of RAM, a

swapping disk, a high resolution bit-mapped display, and a

pointing device. ']'he programming environment includes over

a hundred classes, thousands of methods, and thougands of

other objects. Applications programs typically define a dozen
or more classes and a hundred or more procedures, and they

may create thousands of additional objects.

TINYTALK

The programming language TinyTalk provides a subset of

Smalltalk-76 which is suitable for implementation on a 64K

byte microcomputer. The TinyTalk compiler accepts

essentially the full Smalltalk-76 syntax. Its main restriction is

that space limitations permit only a few thousand objects.

TinyTalk does not support multiple processes. It does not

require or support a bit-mapped display, or a pointing device,

but it can be used with any standard ASCII keyboard and

terminal. While Smalltalk-76 uses reference counting to

determine when objects can be deallocated, TinyTalk employs

a compacting garbage collector to guarantee reclamation of

the limited space available. Finally, some of the performance

optimizations incorporated into Smalltalk-76 have been left

out of TinyTalk for the sake of simplicity and space.

We have implemented TinyTalk on a microcomputer

containg an Intel 8086 and 64K bytes of RAM. Most

memory space is occupied by the interpreter, storage manager,

and standard class library (including an incremental compiler

and an interactive source language debugger), leaving

approximately 8K bytes of free space for user programs --

about two or three pages of source code.

Because TinyTalk's space and I / 0 restrictions are fairly

severe, it should be clear that the system is intended for

students who wish to gain practice in object-oriented
"198

programming rather than for supporting large-scale

applications programs.

IMPLEMENTATION

All objects other than integers are referenced within the

system by an Ordinary Object Pointer (OOP). The t O P is an

index into an indirect pointer table. Each entry in the table

gives the location in the heap at which the fields of the

corresponding object are stored. The indirect table makes

relocation of the object during compaction very cheap and

easy.

When a new object is created, space is allocated on the

top of the heap. The heap is allowed to grow until it reaches

a certain limit, at which time the compacting garbage collector

is invoked.

Object code in TinyTalk is made fairly compact by a

resident incremental compiler which translates source code

programs into byte-code strings whose syllables represent the

main atomic operations performed by the system. The byte-

code strings are executed by the TinyTalk byte-code
interpreter. The interpreter uses a conventional push-down

stack for keeping track of its state. See [IngaUs] for a more

detailed discussion of the byte-code interpreter.

SAMPLE SESSION
A sample dialogue in TinyTalk might proceed as follows.

The user's input is prompted by a T. The system's reponse is

shown on the next line.

! acct ~- BankAccount new name: 'John A~ Doe'

John A~ Doe

! acct deposit: 100

100

acct deposit: 250

350

! acct withdraw: 375

false

! acct withdraw: 325

25

CONCLUSIONS

TinyTalk is a simple object-oriented language that has

been implemented on a 64KB microcomputer. It is suitable

for reimplementation and/or use by students who wish to gain

experience with object-oriented programming languages. We

plan to publish the details of the implementation in the near

future as part of a larger work about Smalltalk.

REFERENCES
[Ingalls, Daniel H.] "The Smalltalk-76 Programming

System: Design and Implementation" Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson,

Arizona, January 23-25, 1978.

