
Croquet - Hedgehog

David A. Smith
Andreas Raab
David P. Reed

Alan Kay

Hedgehog Architecture
● Islands
● Replicated Islands
● Routers/Controllers and Genuine Time Based

Replication
● Joining, participating
● Capability Facets
● Overlay Portals
● Ghost objects
● Reference objects
● Graphics and Transform Support
● Tweak

Islands

Islands are “safe” containers

They can be easily saved and
duplicated

Objects can send messages to
other objects in islands normally

Objects in islands can only be
accessed by reference externally

FarRef

FarRefs are created whenever an
object is externally accessed

FarRef

The Island maintains a list of
named objects that can be
accessed externally

FarRef

Messages are sent indirectly via
the FarRef

FarRef

farRef send:[obj | obj sendMessage.].

BUT: You should never have to do
this.

FarRef

farRef send:[obj | obj sendMessage.].

Replicated Islands

Meta is Dead

Replicated Islands

Machine A Machine B

Replicated Islands

● Deterministically Equivalent
● Islands replicated via checkpoint mechanism
● Internal Future messages implicitly replicated
● External Future messages explicitly replicated
● External non-replicated messages VERY bad
● New objects: Routers and Controllers
● Meta no longer required, because Island contents

and all external messages are guaranteed to be
properly replicated.

Timing is Everything!

● External messages must be executed in the same
order and at the same time in all replicated is-
lands.

● Internal messages are executed deterministically,
as long as island structure remains identical – we
have identical results.

● But how?

Island's View of Time is defined
only by message order!

Machine A

Target

Message

Arguments

Time

Message Queue Sorted by Time

New message inserted with
#future:

Machine A

Target: cylinder

Message: #turn:

Arguments: {25}

Time: now+100

Message Queue Sorted by Time

(self future:100) turn: 25.

An example (recursion in time):

ACylinder>>#aMessage: arg

“ this is a typical pattern for performing
redundant tasks, such as animations “

self doSomethingWith: arg.
arg> 0 ifTrue:[

(self future:100)aMessage:arg-1.].

Routers, Controllers and Genuine
Time Based Replication

The Router

● Acts as the clock for the replicated Islands
● Determines when an external message is actually

executed for all Islands
● Sends heartbeat messages to move time forward
● The Island Creator owns the Router by default
● It is possible to have a number of routers that

share the ability to grant message send requests.

The Controller

● Manages the interface between the island and the
router

● Manages the message queue
● Non-replicated part of island/controller pair
● Can exist without an island, acting as a proto-

island until the real island is either created or
duplicated.

The Router/Controller

Machine A

Router

Controller
FarRef

Message sent to farRef – no time
is specified

Machine A

Router

Controller

farRef future aMessage:args

FarRef

farRef forwards to controller

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Controller forwards to Router

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Router adds time stamp (and
enumeration), forwards back to
controller

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Controller forwards time-stamped
message to add to message
queue.

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Island executes all messages up
to the new external message

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Island executes all messages up
to the new external message

Machine A

Router

Controller

farRef future aMessage:args

FarRef

Island executes all messages up
to the new external message

Machine A

Router

Controller

farRef future aMessage:args

FarRef

If there is no external message to
move things forward, the router
will manufacture one.

Machine A

Router

Controller

Heartbeat message

Messages are then executed by
Island up to and including the
heartbeat message from Router

Machine A

Router

Controller

Heartbeat message

Messages are then executed by
Island up to and including the
heartbeat message from Router

Machine A

Router

Controller

Heartbeat message

Messages are then executed by
Island up to and including the
heartbeat message from Router

Machine A

Router

Controller

Heartbeat message

This works for any number of
replicated islands.

Machine A

Router

Machine B

This works for any number of
replicated islands.

Machine A

Router

Machine B

This works for any number of
replicated islands.

Machine A

Router

Machine B

This works for any number of
replicated islands.

Machine A

Router

Machine B

Router/Controller/Island
● Does not matter where the message comes from
● Islands can not move past whatever time the

Router specifies it is
● Router sends heartbeat messages to move time

forward when no external messages are available
to drive time forward

● Guarantees Islands execute identical messages in
identical order

Router enumerates messages
● Messages from router are enumerated.
● If controller receives m1, m2, m4, controller

knows that it missed m3 and request that it be re-
sent.

Islands view of time
● Islands only understand time in quantized terms

– there is only now (when message is executed)
● – and now + x (when future message will be ex-

ecuted)
● Router controls execution time for all islands.
● Router needs to send heartbeat messages to en-

sure smooth animations.
● Heartbeat messages can be ignored by controller,

with result of jerky updates.

Nice side effects
● Latency does not create timing problems, just

feedback problems (system acts sluggish if you
have higher latency).

● Users are not punished for having a high-latency
participant sharing an island (though the high la-
tency participant has a poor experience).

● Routers can be independent of Island/controller
pairs, hence can be positioned on minimal laten-
cy or centralized balanced latency servers.

● Routers can even be moved around if necessary
to improve latency for specific users or groups.

Latency does not effect accuracy
– only usability.

Router

Router

Router can be moved to more
latency centric location.

Router

Starting and Joining

First there was the router...

Router

The new router can be on any machine, not just
the users.

Next create a Controller

Router

Controller

The new controller will be on the users machine. It
is given the Router address and port number.
Since it will be used to construct the initial island,
we call it the master controller.

Request to join

Router

Controller

The controller sends a message to the router asking for
messages. The router (if it is authorized) begins pub-
lishing its message stream to the controller.

Join
request

Controller joins Router message
stream

Router

Controller

Once the join is accepted, the router sends all replicat-
ed messages and heartbeats to the controller. The con-
troller saves these into a message queue.

Message
Stream

Controller constructs new Island

Router

Controller

Message
Stream

Machine A

Adding a new user – construct
controller

Machine A

Router

This is similar to constructing the initial
controller/island pair. First, create the
controller.

Request to join router

Machine A

Router

Request to join the router.

Start receiving messages

Machine A

Router

Once granted, we add new messages
into the message queue.

Request Island

Machine A

Router

The controller can now be used to re-
quest a copy of the Island.

Island checkpointed and sent

Machine A

Router

The island is checkpoint streamed to the
new controller via the router.

Island checkpointed and sent

Machine A

Router

Island checkpointed and sent

Machine A

Router

The controller resurrects the island
locally.

Island is resurrected and can now
be displayed.

Machine A

Router

Machine B

Message queue is culled to >=
Island current time.

Machine A

Router

Machine B

Participating
● Joining is “view only” interaction – the user can

not modify the Island contents until he gets per-
mission to participate.

● The user must request permission from the
Router to participate.

● The router grants participation capability via
“facets”

● Interesting aside – we can manage any number
of “joined” users simply by broadcasting the
message stream to them. This allows arena type
interactions.

Request right to participate from
Router

Router

Machine B

Router passes a list of facets, or
interfaces to controller.

Router

Machine B

Router passes a list of facets, or
interfaces to controller.

Router

Machine B

External message is sent to
controller.

Router

Machine B

Controller looks up
object/message pair in facet
dictionary.

Router

Machine B

Facet is used to invoke replicated
message, sent to router

Router

Machine B

Router performs reverse look-up
to find original message.

Router

Machine B

Actual message is sent to all
controllers.

Router

Machine B

Capability Facets
● Each facet dictionary is unique to a

controller/island pair.
● Different users may have different size dictionar-

ies – they may be granted fewer or more capabil-
ities than other users.

● The controller cannot send a message if it is not
in the facet dictionary.

● Facets ensure that only trusted users have ability
to modify a given state. They must be explicitly
granted this access.

● This does not mean they won't abuse it!

Overlay Portals
● Portals are the main access to Islands.
● They can be overlaid on top of each other such

that an island portal may be overlaid with a user
interface portal, and system control portal.

● They also contain the user interface objects used
to manipulate the contents of an island.

Ghost Objects
● Ghost objects are objects that do not actually ex-

ist inside of an Island, but act as if they do.
● They are in a separate island that is accessed by

an overlay portal.
● Examples of ghosts might be window frames, UI

handles, billboards, and portals into other islands
● This means that though islands are never directly

connected to each other, they can still look and
act as if they are.

Reference Objects
● Like ghost objects, reference objects are not

actually inside of an island either.
● They are objects that are typically not replicated,

or are reused across multiple islands.
● Examples of reference objects are:

– TForms – reused across multiple islands
– OpenGL objects such as display lists and textures
– Any kind of non-replicated object required by an

Island.
● When we render a scene with a reference object,

only the opengl object is aware of it.

Rendering is not replicated!
● Rendering occurs locally to a machine. It is a

non-replicated process, hence does not employ
the #future message. Instead, it is one of the few
places where we use the #send: pattern described
earlier.

● We are exploring a write-protect capability to
ensure that the island state is not modified by the
render process.

Graphics and Transforms
● The TFrame based graphics architecture is being

cleaned up and simplified.
● In particular, looking at immutable object man-

agement (textures, meshes) via worldbase
servers

● Will be incorporating the new texture manage-
ment and shader capabilities being developed at
UofW (using the reference architecture of
course)

● Matrices are being cleaned up. Will be adding a
real scale capability though it will be symmetri-
cal.

Tweak
● The new replicated island model dramatically

simplifies making Tweak and the 3D aspects
inter-operate properly.

● Next release will begin to take advantage of
Tweak both as the basis of UI and as a develop-
ment platform.

● Morphic will be going away as soon as Tweak's
development tools reach a critical mass (soon).

What is the difference between TT
and STT

● TT presumes majority rules, and allows for
aborted message sends. STT elects a king –
properly sent messages must be executed.

● TT manages interactions between TeaParties to
minimize replicated messages. STT does not al-
low messages between Islands.

● TT is actually a new model of computation that
includes time as a central aspect. Time is a con-
tinuous function. STT model of time is discrete,
time is quantized.

● Coding to STT should work with TT with few or
even no changes.

