
TeaTime: Designing the Architectural TeaTime: Designing the Architectural
Framework for CroquetFramework for Croquet

David P. ReedDavid P. Reed

Hewlett-Packard Labs &Hewlett-Packard Labs &

MIT Media LabMIT Media Lab

October 19, 2005October 19, 2005

[with David A. Smith, Andreas Raab, and [with David A. Smith, Andreas Raab, and
Alan Kay of Viewpoints Research Institute]Alan Kay of Viewpoints Research Institute]

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 22

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 33

OverviewOverview

Decentralized, real-time, p2p, shared reality, Decentralized, real-time, p2p, shared reality,
collaboration collaboration frameworkframework

Technology assumptions: low-latency, high-Technology assumptions: low-latency, high-
connectivity, abundant computationconnectivity, abundant computation

Focus: coordination, extensibility, systems Focus: coordination, extensibility, systems
issues (i.e. security, robustness, issues (i.e. security, robustness,
evolvability)evolvability)

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 44

AgendaAgenda

Motivation for new architectureMotivation for new architecture
What is OO computing, exactly?What is OO computing, exactly?
System StructureSystem Structure
The TeaTime model of computationThe TeaTime model of computation
Messaging InfrastructureMessaging Infrastructure
Replication Infrastructure Replication Infrastructure

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 55

Freely Scalable PlatformFreely Scalable Platform

Turn network inside outTurn network inside out
Capability grows with useCapability grows with use
Brilliant members replaceBrilliant members replace

WIMP clients/LAME WIMP clients/LAME
serversservers

Resiliency and other Resiliency and other
systems issues become a systems issues become a
user/application choiceuser/application choice

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 66

Objects Behave!Objects Behave!

Time-centered Time-centered
computingcomputing

Replication and Replication and
persistence of persistence of
behaviors, not databehaviors, not data

->Coordination via ->Coordination via
control of message control of message
scheduling, not scheduling, not
control of access to control of access to
datadata

mouseDown

change
commit

commit

mouseDown
change

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 77

Embedded VirtualityEmbedded Virtuality

The physical world is made The physical world is made
up of up of objects behavingobjects behaving

Common message Common message
distribution framework distribution framework
supports broad range of supports broad range of
device ability device ability
(filtering/proxying)(filtering/proxying)

Temporal coordination Temporal coordination
across multiple devices in across multiple devices in
multiple placesmultiple places

Controlled latency for Controlled latency for
natural media interactionnatural media interaction

mouse

GL viewport

hand

camera

Program

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 88

A powerful user frameworkA powerful user framework

Shared spaces hold Shared spaces hold
behaviorsbehaviors

Portals link spacesPortals link spaces
User and their agents User and their agents

are objectsare objects
Visual “filters” represent Visual “filters” represent

“tools” that operate on “tools” that operate on
objectsobjects

Message-flow Message-flow
constrains securityconstrains security

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 99

Legacy software supportLegacy software support

Desktop or window Desktop or window
rendered into a rendered into a
shared space shared space
accessible to multiple accessible to multiple
usersusers

Specialized computing Specialized computing
devices or programs devices or programs
can be cloaked by can be cloaked by
Croquet object proxyCroquet object proxy

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1010

Croquet Abstraction and Croquet Abstraction and
ImplementationImplementation

Croquet is not Squeak or SmalltalkCroquet is not Squeak or Smalltalk
ImplementedImplemented in Squeak in Squeak
““Virtual machine” – not a language (yet?)Virtual machine” – not a language (yet?)
Eventually a family of languages?Eventually a family of languages?

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1111

Systems StructureSystems Structure

Virtual Peer-to-peer Network Overlay

Some-to-some message delivery

TObject

TeaTime Message Coordination

Message

Object Naming, Storage, Persistence

UUIDs and DHT

V
MVM

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1212

Computational model - TeaTimeComputational model - TeaTime

TObjects – objects that behaveTObjects – objects that behave
Croquet Messages – connect objectsCroquet Messages – connect objects
Primitive TObject classes:Primitive TObject classes:

TeaTime – expresses coordinationTeaTime – expresses coordination
TeaParty – manage replicationTeaParty – manage replication
TeaParticipant – virtual host machineTeaParticipant – virtual host machine

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1313

TObjectsTObjects

Objects express behavior over time by a stream of Objects express behavior over time by a stream of
messagesmessages

Object behavior controlled by a stream of Object behavior controlled by a stream of
messagesmessages

Objects map received messages to sent Objects map received messages to sent
messages via methodsmessages via methods

Objects can be thought of as an evolving history of Objects can be thought of as an evolving history of
messages sentmessages sent

Objects are causal – the output stream is a Objects are causal – the output stream is a
function of inputsfunction of inputs

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1414

Croquet messagesCroquet messages

Messages select a method, carry parameter Messages select a method, carry parameter
objects, and objects, and specify “when” they take specify “when” they take
effecteffect

Optionally, messages provide the name of Optionally, messages provide the name of
an object to which a response is sentan object to which a response is sent

Messages belong to a TeaTime, and contain Messages belong to a TeaTime, and contain
explicit timing constraintsexplicit timing constraints

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1515

Objects are uniquely namedObjects are uniquely named

An object is fundamentally a unique name, An object is fundamentally a unique name,
not a particular piece of storage, and has not a particular piece of storage, and has
no inherent location.no inherent location.

Replication is done by allowing the same Replication is done by allowing the same
name to exist in multiple places - name to exist in multiple places - clonesclones

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1616

Computational execution - sea of Computational execution - sea of
messagesmessages

Messages are issued by objects, but are not Messages are issued by objects, but are not
delivered immediatelydelivered immediately

Active messages in transit queues are Active messages in transit queues are
prioritized by deadline – earliest deadline prioritized by deadline – earliest deadline
firstfirst

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1717

ExampleExample

Normal message sendNormal message send
obj oper: -expr-obj oper: -expr-
obj perform: #oper: argument: -expr-obj perform: #oper: argument: -expr-

creates a message in the current TeaTime, result passed to next creates a message in the current TeaTime, result passed to next
piece of code in blockpiece of code in block

““Future send”Future send”
obj future: 30.0 performAndCommit: #oper: argument: -expr-obj future: 30.0 performAndCommit: #oper: argument: -expr-

creates a new TeaTime 30 msec. in the future of the current creates a new TeaTime 30 msec. in the future of the current
TeaTime, and creates a message to obj in that TeaTime. result is TeaTime, and creates a message to obj in that TeaTime. result is
the created TeaTime, passed to next piece of code in block.the created TeaTime, passed to next piece of code in block.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1818

TeaTime enables temporal TeaTime enables temporal
reflectionreflection

Objects expose a portion of their temporal Objects expose a portion of their temporal
history to read and modify, selected by history to read and modify, selected by
TeaTime of the incoming messageTeaTime of the incoming message

Until that history is “committed” it can be Until that history is “committed” it can be
adjustedadjusted

TeaTime is the control means by the object TeaTime is the control means by the object
implements its own scheduling.implements its own scheduling.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 1919

Key insight: objects are not Key insight: objects are not
statesstates

TeaTime is held in the messagesTeaTime is held in the messages
Object is time-independent, Object is time-independent,

programmed mapping from a programmed mapping from a
set of input messages to a set set of input messages to a set
of output messagesof output messages

““Code” of an object just defines Code” of an object just defines
the mappingthe mapping
must be causal, incrementally must be causal, incrementally

executableexecutable

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2020

It’s messages all the way downIt’s messages all the way down

[Unlike C++] primitives aren’t read/write [Unlike C++] primitives aren’t read/write
memory locations.memory locations.

Objects are deterministic mappings from Objects are deterministic mappings from
sets of messages [ordered by TeaTime] to sets of messages [ordered by TeaTime] to
sets of messages.sets of messages.

The input set of messages to an object The input set of messages to an object
evolves over time, and the output set evolves over time, and the output set
evolves as a consequence of the input set.evolves as a consequence of the input set.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2121

Replicated computationReplicated computation

Croquet replicates computationsCroquet replicates computations

What does this mean when computations are What does this mean when computations are
composed of messages?composed of messages?
Each Each cloneclone of an object has an identical history; of an object has an identical history;
Messages between objects are replicated as Messages between objects are replicated as
needed so that each clone eventually receives needed so that each clone eventually receives
an identical sequence of input messagesan identical sequence of input messages

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2222

Tea Party – unit of replicationTea Party – unit of replication

The granularity of replication is typically not the The granularity of replication is typically not the
underlying object, and decision making naturally underlying object, and decision making naturally
groups objectsgroups objects

Each object is a member of exactly one Each object is a member of exactly one tea partytea party; ;
a tea party is a logical group of objectsa tea party is a logical group of objects

Tea parties are the unit of replication – all objects Tea parties are the unit of replication – all objects
in a tea party are cloned on the same set of in a tea party are cloned on the same set of
machinesmachines

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2323

Example codeExample code

tp := TeaParty new. “new tea party”tp := TeaParty new. “new tea party”
space := (tp global: #TSpace) new. “new object in tea party”space := (tp global: #TSpace) new. “new object in tea party”
tp future: 100.0 accept: { aTeaParticipant }. “replicate tea party”tp future: 100.0 accept: { aTeaParticipant }. “replicate tea party”
tt := space future: 200.0 performAndCommit: #start: argument: tt := space future: 200.0 performAndCommit: #start: argument:

self. “send msg to object”self. “send msg to object”
tt committed ifTrue: […].tt committed ifTrue: […].

… … in TSpace …in TSpace …
start: senderstart: sender

sender future: 10.0 performAndCommit: #done. “reply”sender future: 10.0 performAndCommit: #done. “reply”

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2424

Non-replicated tea partiesNon-replicated tea parties

Objects that are specific to a particular Objects that are specific to a particular
machine are members of machine are members of non-replicatednon-replicated
tea partiestea parties
- the “h ome space” where the user enters- the “h ome space” where the user enters
- I/O devices- I/O devices
- legacy applications on specific machines- legacy applications on specific machines

Model with a tea party that cannot have Model with a tea party that cannot have
clonesclones

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2525

The everywhere replicated tea The everywhere replicated tea
partyparty

Certain “i mmutable” objects can be logically Certain “i mmutable” objects can be logically
replicated everywherereplicated everywhere

e.g. large read-only files that e.g. large read-only files that never change never change
once createdonce created (textures, movies), true (textures, movies), true
random number generatorsrandom number generators

What does What does immutableimmutable mean? mean?
- Every message commutes with every other - Every message commutes with every other

message – complete independence.message – complete independence.

Enables special-case mechanism to Enables special-case mechanism to
manage clonesmanage clones

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2626

Replication of messagesReplication of messages

Message replication is controlled by the Message replication is controlled by the
replication of tea partiesreplication of tea parties

Special case: from a tea party to itselfSpecial case: from a tea party to itself
Other cases: one-to-many, many-to-many, Other cases: one-to-many, many-to-many,

many-to-onemany-to-one

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2727

Determinism and replicationDeterminism and replication

Any tea party objects that are fully Any tea party objects that are fully
deterministic (across its boundaries) can deterministic (across its boundaries) can
be replicated arbitrarily.be replicated arbitrarily.

Factor non-deterministic behaviors into Factor non-deterministic behaviors into
separate non-replicated tea parties.separate non-replicated tea parties.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2828

Applications easily organized by Applications easily organized by
TeaParty conceptTeaParty concept
3d sound-based collaboration3d sound-based collaboration

Distributed computation – e.g. distributed Distributed computation – e.g. distributed
collision detection (factor loosely collision detection (factor loosely
connected computations into separate connected computations into separate
groups)groups)

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 2929

PersistencePersistence

Key issue is behavioral persistenceKey issue is behavioral persistence

““servers” hold persistent stateservers” hold persistent state
(key idea is that you can “rent a (key idea is that you can “rent a
participant”)participant”)

Tea time coordinates all stateTea time coordinates all state

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3030

TeaTime objectsTeaTime objects

Fundamental unit of coordinationFundamental unit of coordination

State diagram monotonic in timeState diagram monotonic in time
undecided -> committedundecided -> committed
undecided -> abortedundecided -> aborted

TeaTimes are totally orderedTeaTimes are totally ordered
All messages and histories are sequences of tea All messages and histories are sequences of tea

timestimes

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3131

TeaTime and 3-phase commitTeaTime and 3-phase commit

A causal, deterministic set of messages executes A causal, deterministic set of messages executes
in an instant of tea timein an instant of tea time

While the tea time is undecided, it can affect the While the tea time is undecided, it can affect the
future of the objects it touchesfuture of the objects it touches

If committed, it can only If committed, it can only observe observe the effects of the effects of
prior tea timesprior tea times

If aborted, it can have no effect and cannot be If aborted, it can have no effect and cannot be
observed in computations carried out during observed in computations carried out during
other tea times.other tea times.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3232

Some-to-some messagingSome-to-some messaging

Network layer implication of replicated Network layer implication of replicated
message-based computation.message-based computation.

Each clone of a target object must receive Each clone of a target object must receive
one copy of the message from a sourceone copy of the message from a source

Any source can provide for each targetAny source can provide for each target
(unicast, multicast, anycast are instances of (unicast, multicast, anycast are instances of

some-to-some)some-to-some)

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3333

Macro structureMacro structure

Croquet Places – “web page” or 3D spaceCroquet Places – “web page” or 3D space
consist of multiple tea partiesconsist of multiple tea parties

Gateways – a small tea party that provides an Gateways – a small tea party that provides an
advertised “entry point” to spaceadvertised “entry point” to space

Rendezvous involves finding a gateway – the Rendezvous involves finding a gateway – the
protocol begins by authenticating credentialsprotocol begins by authenticating credentials

Security is “capability-based” – rendezvous is the Security is “capability-based” – rendezvous is the
bootstrap for security.bootstrap for security.

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3434

Network protocolsNetwork protocols

Gateway discovery (LAN broadcast and DHT)Gateway discovery (LAN broadcast and DHT)

Inter-tea party some-to-some peer protocol – Inter-tea party some-to-some peer protocol –
under active research by DPR. under active research by DPR.

Tea-time commit (derived from my thesis, and Tea-time commit (derived from my thesis, and
reminscent of Paxos from Lamport)reminscent of Paxos from Lamport)

19 October 200519 October 2005 Copyright © 2005 David P. Reed.Copyright © 2005 David P. Reed. 3535

Micro-structureMicro-structure

Use Squeak VM optimizations (including Use Squeak VM optimizations (including
JIT someday).JIT someday).

““Veil” m echanism wraps all references Veil” m echanism wraps all references
between object in one tea party and between object in one tea party and
another, so messages are sent through a another, so messages are sent through a
“cached” path in the veil.“cached” path in the veil.

Optimizations factored into a “TeaPartyLink” Optimizations factored into a “TeaPartyLink”
structurestructure

