
Approximate String Matching 

PATRICK A. V. HALL 

SCICON Consultancy International Ltmited, Sanderson House, 49 Berners Street, London WIP 4AQ, 
England 

GEOFF R. DOWLING 

Department of Computer Science, The City Unwersity, Northampton Square, London EC1V OHB, England 

Approximate matching of strings is reviewed with the aim of surveying techniques 
suitable for finding an item in a database when there may be a spelling mistake or other 
error in the keyword. The methods found are classified as either equivalence or similarity 
problems. Equivalence problems are seen to be readily solved using canonical forms. For 
sinuiarity problems difference measures are surveyed, with a full description of the well- 
establmhed dynamic programming method relating this to the approach using 
probabilities and likelihoods. Searches for approximate matches in large sets using a 
difference function are seen to be an open problem still, though several promising ideas 
have been suggested. Approximate matching (error correction) during parsing is briefly 
reviewed. 

Keywords and Phrases: approximate matching, spelling correction, string matching, error 
correction, misspelling, string correction, string editing, errors, best match, syntax errors, 
equivalence, similarity, longest common subsequence, searching, file organization, 
informatmn retrieval 

CR Categories: 1.3, 3.63, 3.7, 3.73, 3.74, 4.12, 5.42 

INTRODUCTION 

Looking up a person's name in a directory 
or index is an exceedingly common opera- 
tion in information systems. When the 
name is known in exactly the form in which 
it is recorded in the directory, then looking 
it up is easy. But what if there is a differ- 
ence? There may be a legitimate spelling 
variation, or the name may be misspelled. 
In either situation the lookup procedure 
will fail unless some special search is un- 
dertaken. Yet this requirement of searching 
when the string is almost right is very com- 
mon in information systems. 

This paper shows builders of information 
systems what is possible in finding approx- 
imate matches for arbitrary strings. Exist- 

ing methods are placed within a general 
framework, and some new techniques are 
added. 

Behind this string matching problem is a 
yet more general problem of approximately 
matching arbitrary information items or 
groups of items. This survey avoids this 
very general problem, although many of the 
methods surveyed are applicable. We con- 
centrate instead on the matching of a single 
string within a set of Stl~gs. Strings have 
special properties, and string matching has 
many important applications. 
Many investigations of string matching 

have concentrated on searching for a par- 
ticular string embedded as a substring of 
another, to satisfy retrieval problems such 
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in T that are "sufficiently like" s, or the N 
strings in T that are "most like" s. The 
intuitive concepts "approximate," "suffi- 
ciently like," and "most like" need eluci- 
dation. We shall see two broad categories 
of the problem in Sections 2 and 3, where 
the idea of "like" is regarded as "equiva- 
lent," or as "different but  similar." 

A secondary factor in our problem is the 
representation of the set of strings T. This 
set can either be represented extensionally 
as an enumeration of the strings in the set 
(that is, all the strings are explicitly stored), 
or intensionally as a set of rules such as a 
grammar. Most of the discussions in this 
paper are in terms of extensional sets. Dis- 
cussion of intensional sets is delayed until 
Section 4. 

as finding a document whose title mentions 
some particular word. Methods for finding 
a substring within another string have cul- 
minated in the elegant method of Boyer 
and Moore [BoYE77, GALI79] where by pre- 
processing the substring it is possible to 
make large steps through the string to find 
a match in sublinear time on average. Ri- 
vest [RIve.77] has shown that the worst 
case behavior must take linear time. 

Instead of searching for a single substring 
one could search for a "pattern." This fa- 
cility is common in string processing lan- 
guages (it is illustrated by the language 
SNOBOL, which is documented in GIMP76) 
and has been developed by Aho and Cor- 
asick [AHO75] and Knuth, Morris, and 
Pratt  [KNUT77]. However, general pattern 
matching is equivalent to asking wbether 
the string conforms to a grammar, and thus 
the algorithms involved are parsing algo- 
rithms (see, for example, HoPc69). 

The basic problem we examine is differ- 
ent. It is as follows. 

Problem: Approximate String Matching 

Given a string s drawn from some set S of 
possible strings (the set of all strings com- 
posed of symbols drawn from some alpha- 
bet A), find a string t which approximately 
matches this string, where t is in a subset T 
of S. 

The task is either to find all those strings 

1. REASONS FOR APPROXIMATE 
MATCHING 

Before describing the various approaches 
to approximate matching in Sections 2, 3, 
and 4, it is worth examining further the 
reasons for approximate matching. There 
are two very different viewpoints: "error 
correction" and "information retrieval." 

We can suppose that what should be 
provided as a search string corresponds pre- 
cisely to what has been stored in some 
record or records. The search string does 
not match because of some corruption pro- 
cess which has changed it. The corruption 
process has a magnitude associated with it, 
and we can talk of large corruptions and 
small corruptions. Furthermore we can 
imagine that the string gets so badly cor- 
rupted that  it becomes similar or identical 
to some other stored string. Thus if the 
corruptions are larger than the differences 
between correct strings, we must expect to 
retrieve falsely, and only if we were to 
weaken our retrieval criterion, would we 
expect to be able to retrieve the correct 
string as an outlying match. 

We can think of ourselves as trying to 
correct the errors introduced by the corrup- 
tion, with the retrieval process being the 
at tempt to correct the error, and with re- 
trieval of a string which is not relevant 
being an error. This corruption-correction 
point of view is adopted in communication 
theory [PETE61] and pattern recognition 
[RISE74]. 
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Alternatively, we can take the viewpoint 
of information retrieval: our search string 
indicates, as best we can, the information 
required. We could be unsuccessful in two 
ways. There is the risk that  unwanted rec- 
ords will be retrieved, while required rec- 
ords are missed. In conventional informa- 
tion retrieval these two phenomena are cap- 
tured by the notion of precision and recall 
[SALT68, PAre77]: 

• p r e c i s i o n - - p r o p o r t i o n  of retrieved rec- 
ords that  are relevant; 

• r e c a l l - - p r o p o r t i o n o f r e l e v a n t r e c o r d s a c -  
tually retrieved. 

It is assumed that  the relevance of records 
is known from other sources. These mea- 
sures are not fully satisfactory, and Paice 
[PAm77] suggests refinements. Recently al- 
ternative information-theoretic measures 
were proposed [RAD~.76]. Nevertheless, 
precision and recall remain useful concep- 
tually; we see that in general we can trade 
one against the other. By being less exact- 
ing in what is retrieved, recall can be made 
to approach 100 percent at the expense of 
precision approaching zero, and vice versa. 
With retrieval based upon a similarity or 
difference measure and a threshold, the 
trade-off can be controlled by varying the 
threshold; this is covered in Section 3.1. In 
the information retrieval literature the im- 
agery of precision and recall appears to 
encourage ad hoc approaches, possibly be- 
cause a correct analysis is very difficult and 
something is better than nothing. 

Before we move to consider these ideas 
in further detail, we hope that  two facts 
have been seen emerging. First, we must 
understand the sources of the corruptions 
or variability that  are requiring us to make 
approximate matchings, and we must com- 
pensate for them accurately. Second, we 
must know something about the size of the 
corruptions and adjust our retrieval crite- 
rion accordingly, and expect that for large 
corruptions we will get a degraded perform- 
ance however we choose to measure it. 

2. EQUIVALENCE 

2,1 The Equivalence Problem 

One notion of "approximate" and "like" is 
e q u i v a l e n c e .  If two strings which are super- 
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ficially different can be substituted for each 
other in all contexts without making any 
difference in meaning, then they are equiv- 
alent. 

Common examples of equivalence are al- 
ternate spellings of the same word, the use 
of spaces as formatting characters, optional 
use of upper- or lowercase letters, and al- 
ternative scripts. For example, all the fol- 
lowing strings might be considered as 
equivalent. 

Data Base data-base data base database 

data base d a t a b a s e Database. 

In Arabic and other languages using the 
Arabic script, there is considerable discre- 
tion in how words are typed, associated 
with the art of calligraphy [HALL78]. 

Another very different example of equiv- 
alence occurs in arithmetic expressions. 
The same basic calculation can be ex- 
pressed in many ways by using different 
orders, bracketing, and repeating argu- 
ments in order to give an infinite variety of 
expressions, all of which are equivalent (see, 
for example, JENK76). 

A very important example in keyword 
searching in information retrieval [PAIc77] 
is the treatment of all grammatical variants 
of a word as equivalent as far as retrieval is 
concerned. Normally, mechanisms here at- 
tempt to reduce words to their stem or root, 
and then to treat all words that  can be 
reduced to the same stem as equivalent. 

In some interpretations [UNES76] syn- 
onyms can be viewed as equivalents, but 
synonyms are more properly considered as 
similarities and are discussed in Section 3.1. 

It is possible that  some abbreviations can 
be viewed as alternative spellings and thus 
as equivalences--for example, LTD. for 
LIMITED. In general this is not possible, 
since several words may hove the same 
abbreviation--for example, ST. for both 
SAINT and STREET. 

The idea of equivalence is well under- 
stood in mathematics [BIRK70]. One can 
talk of an equivalence relation "~"  on the 
set S of all possible strings, such that  for 
strings r, s, t in S 

(i) s ~ s reflexivity 
(ii) s ~ t ~ t ~ s symmetry 

(iii) r ~ s and  s ~ tffi* r ~ t 
transitivity 
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The first two properties axe obvious. It  is 
the third property that is important, the 
property that  if r is equivalent to s, and s is 
equivalent to t, then r is equivalent to t. 

We can now reformulate our matching 
problem for equivalences. 

Equivalence Problem 

Given s in S, find all t in T such that s ~ t. 

The equivalence relation divides the set 
S of all strings into subsets $1, $2, $3 . . . . .  
such that all strings in a subset are equiv- 
alent to each other and not equivalent to 
any string in any other subset. These sub- 
sets are called "equivalence classes." We 
can paraphrase our problem as finding all 
the elements of T which are in the same 
equivalence class as the search string s. 

Equivalence classes can be characterized 
by some typical or exemplary member of 
the class. This exemplary member is fre- 
quently known as the canonical form for 
the class [BIRK70], and usually there are 
rules for transforming any element into its 
canonical form (that is, the canonical form 
of its equivalence class). Since there is a 
one-to-one correspondence between can- 
onical forms and equivalence classes, it 
gives another formulation of our problem, 
to find all the elements t in T with the same 
canonical form as the search string s. 

2.2 Storing and Retrieving Equivalent Strings 

All methods rely upon the well-established 
technology of storing and retrieving exact 
matches using a retrieval key, as exempli- 
fied by Knuth [KNUT73] or Martin 
[MART75]. 

To solve the equivalence problem di- 
rectly, all strings are separately indexed, 
and all members of an equivalence class are 
linked together in some manner. Thus any 
string indexes into its equivalence class, and 
all equivalent strings can be retrieved. This 
method can be used for alternative spellings 
and for thesauri where synonyms are 
treated as equivalences [UNES76]. For 
symbol tables in interpreters and compilers 
where alternative keywords which are not 
systematic abbreviations are used (as, for 
example, in PL/1), these indexes would be 
predetermined and would be hand opti- 

(1) Change internal z's to s's when preceded and fol- 
lowed by a vowel or y. 

Examples: razor, analyze, realize 
Counterexamplas: hazard, squeeze 

(2) Replace all internal occurrences of 'ph' by 'f ' ,  

Examples: sulphur, peripheral, symphony 
Counterexamples: uphill, haphazard 

(3) For words of at  least six letters, replace a word 
ending 'our' by 'or'. 

Examples: flavour, humour 
Counterexample: devour 

(4) After removing endings such as 'e', 'ate', and 
'ation', replace the endings ' tr '  by 'ter'. 

Examples: centr(e), filtr(ate) 

FIGURE 1. Rules for producing a canonical form for 
English and American spellings. (From PAxc77.) 

mized in their design. However equiva- 
lences sometimes are only obtained as part 
of the acquisition of data and would be 
generated dynamically, as happens with 
EQUIVALENCE statements in program- 
ming languages [GRXET1, TARJ.75]. 

The equivalence problem based on can- 
onical forms is much the more common 
form of the problem encountered, so we 
first consider methods for reducing a string 
to a canonical form. Often the transforma- 
tion is trivial, involving the removal of some 
extraneous characters and/or  the replace- 
ment of optional characters by some stan- 
dard choice [SLIN79]. But  in the cases of 
alternative spellings and the roots of words, 
the methods are more elaborate. The dif- 
ferences between English and American 
spelling can mostly be defined by rules 
which convert words to some standard 
spelling. Figure 1, taken from Paice 
[PAIC77], gives a set of possible rules. 

The extraction of true roots of words is 
seldom attempted, but  the removal of al- 
ternative word endings is common. Trun- 
cation is not adequate, and more elaborate 
methods known as "conflation" are used. 
Table 1, from Paice, gives a set of "simple" 
rules; understanding the precise effect of 
these is helped by the example. Rules like 
these could be applied to most languages. 
They will usually be incomplete in that  
there will be many variants that  are not 
accounted for, and they will also treat as 
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T A B L E  1. PAICE'S CONFLATION RULES FOR REDUC- 
ING A FAMILY OF WORDS TO A COMMON R O o T ~ T H E  
RULES ARE INCOMPLETE, BUT ARE CLAIMED TO BE 

SATISFACTORY [PAIC77]  

Label En&ng Replacement Transfer 
- - a b l y  - -  g o t o  I S  
- - i b l y  - -  f i n i s h  
- - f l y  - -  g o t o  S S  

S S  - - s s  - - s s  f i n i s h  
- - o u s  - -  f i n i s h  
- - i e s  - - y  g o t o  A R Y  
- - s  - -  g o t o  E 
- - i e d  - - y  g o t o  A R Y  
- - e d  - -  g o t o  A B L  
- - i n g  - -  g o t o  A B L  

E - - e  - -  g o t o  A B L  
- - a l  - -  g o t o  I O N  

I O N  - - i o n  - -  g o t o  A T  
-- -- finish 

A R Y  - - a r y  - -  f i n i s h  
- - a b i l i t y  - -  g o t o  I S  
- - i b i l i t y  - -  f i n i s h  
- - i t y  - -  g o t o  I V  
- - f l y  - -  f i n i s h  
-- -- finish 

A B L  - - a b l  - -  g o t o  I S  
- - i b l  - -  f i n i s h  

I V  - - i v  - -  g o t o  A T  
A T  - - a t  - -  g o t o  I S  
I S  - - i s  - -  f i n i s h  

- - i f i c  - -  f i n i s h  
- - o l v  - - o l u t  f i n i s h  
- -  - -  f i n i s h  

equivalent words that are not equivalent. 
This leads to degraded performance as 
measured by precision and recall. 

For example, consider the reduction of 
the word "conducts" to its root "conduct." 
Starting at the top of Table 1 we compare 
word endings until the ending " - s "  is 
found. The replacement rule indicates no 
replacement, so the "s" is deleted. The 
transfer column indicates that we should 
continue searching from the label "E." So, 
starting from label "E," searching contin- 
ues, matching word endings until the null 
ending is reached which does match, lead- 
ing to no replacement and "finish." The 
root "conduct" has been found. 

Having defined the canonical forms for 
the equivalence classes and rules for trans- 
forming arbitrary strings to their canonical 
forms, these are two ways in which the 
canonical form can be used. 

First, the canonical form can be produced 
immediately on input, so that the canonical 
form is the only form that is manipulated 
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in the computer, being stored, used for in- 
dexes, and so on. This means that  the orig- 
inal string as input is lost, and therefore 
that strings which are retrieved will in gen- 
eral be different from those which were 
input. Indeed, they may be unreadable un- 
less some compensating transformation is 
undertaken to render them readable. This 
method is invariably used in programming 
languages for strings representing numeri- 
cal data-- these strings are reduced to a 
canonical binary form--but  it is otherwise 
of limited applicability. It  is used for iden- 
tifiers in some compilers, for example in 
FORTRAN where spaces are removed, and 
in some Arabic systems where the reduc- 
tion to canonical form is made in the pe- 
ripherals themselves [HALL78]. 

Second, the canonical form need only be 
used where it matters, and the string as 
input is stored and retrieved. The canonical 
form is used whenever two strings are com- 
pared. If a string item in a record is indexed, 
the string is reduced to canonical form be- 
fore searching the index or adding a new 
entry to the index. When strings are sorted, 
a sort key consisting of the canonical form 
is extracted, and this sort key is used in 
sorting. An example of such a use is given 
in the system reported by Slinn [SLIN79]. 

Of course it is possible to store a string as 
received and on retrieval test all stored 
strings for equivalence. This is very time 
consuming for large sets and underutilizes 
the structure present in the problem. Be- 
cause the methods of this section use stan- 
dard searching technology, they are effec- 
tive for large sets. As will be seen in the 
next section, searching a database with a 
keyword similar to the one stored is difficult 
to do efficiently. 

3. SIMILARITY 

3.1 The Similarity Problem 

By far the most usual understanding of 
"approximate" or "like" is that  of similarity 
between two strings. By some inspection 
process, two strings can be determined to 
be similar or not. The important property 
of similarity which makes it very different 
from equivalence is that  similarity is not 
necessarily transitive; that  is, if r is similar 
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to s and s is similar to t, then it does not 
necessarily follow that r is similar to t. 

In computer-based information systems, 
errors of typing and spelling constitute a 
very common source of variation between 
strings. These errors have been widely in- 
vestigated. Shaffer and Hardwich [SHAF68] 
found in typing that substitution of one 
letter for another was the most common 
error, followed by the omission of a letter 
and then the insertion of a letter. Bourne 
[BouR77] has investigated typing errors in 
a number of bibliographic databases, find- 
ing as many as 22.8 percent of its index 
terms to be misspellings in one database 
and as low as 0.4 percent in another, with 
an average of 10.8 percent over all the data- 
bases sampled. Litecky and Davis [LITE76] 
have investigated errors in COBOL pro- 
grams and found that approximately 20 per- 
cent of all errors were due to misspellings 
and mistypings. All investigations agree 
that  the most common typing mistakes 
found are single character omissions and 
insertions, substitutions, and the reversal of 
adjacent characters. Damerau [DAME64] 
has reported that over 80 percent of all 
typing errors are of this type. This has been 
confirmed by Morgan [MORG70]. Spelling 
errors, by contrast, may be phonetic in or- 
igin. In a study by Masters reported by 
Alberga [ALBE67], it Was found that 65 
percent of dictation errors were phoneti- 
cally correct, and a further 14 percent al- 
most phonetically correct. Phonetic varia- 
tions are particularly common in translit- 
erations, as in the example "Tchebysheff" 
and "Chebyshev." Investigations of errors 
vary in motivation. Bourne [BouR77] was 
concerned with the quality of information 
retrieval and advised better controls to re- 
duce the proportion of these errors. Litecky 
and Davis [LITE76] and others [JAME73, 
LYON74, MORG70] have been interested in 
err6i + recovery and error correction in com- 
pilers. Bell [BELL76] Was interested in er- 
rors as an indicator of programming com- 
petence. 

Optical character recognizers and other 
automatic reading devices introduce similar 
errors of substitutions, deletions, and inser- 
tions, but  not reversal. The frequency and 
type of errors are characteristics of the 
particular device. Pattern recognition re- 

searchers seek to "correct" these errors us- 
ing "context" [RISE74], either by finding 
the best match among a repertoire of pos- 
sible inputs (the problem considered in this 
section) or by using general linguistic strnc- 
ture. 

Many approaches to speech recognition 
deal with strings of phonemes or symbols 
representing sounds, and attempt to match 
a spoken utterance with a directory of 
known utterances [SAKO79, WHIT76, 
ERMAS0]. Variations in strings here can be 
due to "noise" where one phoneme is sub- 
stituted for another similar to it, or pho- 
nemes are omitted or inserted, but  again 
not transposed. Note that  phonemes vary 
in their similarity to each other, which, for 
example, makes it more likely that  a "d" 
sound will be misheard as a "t" sound 
rather than as an "m" or "f" sound 
[N~.wE73, POTT66]. Another source of vari- 
ation in phoneme strings is the duration of 
the spoken word. While words and phrases 
can be spoken at various speeds, speech to 
phoneme transducers often work at fixed 
time intervals, and thus slow speakers pro- 
duce longer sequences of the same or simi- 
lar phonemes [VELI70]. 

Synonyms constitute a very different 
source of variations. In all languages there 
are many words which mean more or less 
the same things. If we consider the follow- 
ing example taken from Roget's thesaurus 
[RoG~.61]: 

GUN RIFLE CANNON 
REVOLVER 

we might be tempted to think of synonyms 
as equivalences, but  if we look at the ex- 
ample 

HOT WARM COOL COLD 

we see that synonymity is not transitive; 
HOT is not synonymous with COLD. How- 
ever, when synonyms are controlled by a 
thesaurus, they are often treated as equiv- 
alent (see for example the SPINES thesau- 
rus [UNES76]), often referring to the var- 
ious alternative words as denoting a partic- 
ular "concept." Thesauri and synonyms are 
discussed in most books on information re- 
trieval [SALT68, PAIC77]. 

A problematic example is abbreviations, 
especially when used in names. Note that 
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this has the flavor of a similarity relation- 
ship, not an equivalence one. For example, 
"P." might be an abbreviation for both 
"PATRICK" and "PETER," but Patrick 
and Peter are certainly not equivalent! A 
survey of methods for systematically gen- 
erating abbreviations while retaining dis- 
crimination ability has been given by 
Bourne and Ford [BouR61]. Although a full 
treatment of the handling of abbreviations 
is beyond the scope of this paper, we sug- 
gest that  an abbreviation denotes a set of 
strings and thus denotes partial knowledge 
about the actual string intended. The par- 
tial knowledge problem is very close to the 
problem we are studying here, and the re- 
cent pioneering paper by Lipski [LIPs79] is 
highly recommended. 

In all these examples we have been hy- 
pothesizing some mechanism for testing 
whether two strings are similar to each 
other. Analogous to an equivalence rela- 
tion, we can define a similarity relation "~"  
on the set S, such that for r, s, and t in S 

(i) s ~ s reflexivity, 
(ii) s ~ t ~ t ~ s symmetry, 

but 

(iii) r ~ s and s ~ t ~b r ~ t 
not necessarily 

transitive. 

Our problem now becomes 

Similarity Problem 

Given s in S, find all t in T such that  s ~ t. 

Now in most examples there is some idea 
of degree of similarity. There can be one or 
many typing mistakes; a spelling mistake 
can be almost right or completely wrong; 
two spoken utterances can sound very sim- 
ilar or completely different; and even syn- 
onyms can have degrees of similarity. Thus 
we can postulate a similarity function 

a : S  × S---~ R 

which for a pair of strings s and t produces 
a real number a(s, t). This similarity is 
usually taken to have a value +1.0 for iden- 
tical objects, and ranges down to 0.0 (or 
sometimes -1.0) for very different objects. 
Thus we could solve the similarity problem 
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by finding all strings t~such that  a($, t) is 
greater than some threshold of acceptabil- 
ity, or we could find the N strings, t~, t2, 
. . . .  tN such that their a(s, t j  have the N 
largest values. 

Similarity functions in this form were 
favored by Alberga [ALBP.67] and are very 
popular in information retrieval [SALT68, 
PAIC77] and in classification and clustering 
[CORM71]. The value of +1.0 for an exact 
match seems to have strong intuitive ap- 
peal, and the range of values from -1.0 to 
+1.0 appears to gain respectability from 
correlation coefficients and normalized in- 
ner products [RAHM68]. For example, Sal- 
ton gives a similarity function 

min(v, v, 
= i 

for the property vectors v and w of two 
terms. It has the range [0.0, +1.0]. 

To begin with, we use a difference func- 
tion 

d : S  × S - *  R 

with properties 

(i) d(s ,  t) - 0 
(ii) d(s,  t) = 0 if and only if s = t 

(iii) d(s ,  t) = d ( t ,  s) 
(iv) d(s,  t) + d(t ,  r) ~_ d(s ,  r) 

triangular inequality. 

It is this triangular inequality which is use- 
ful, as seen in Section 3.3. When a difference 
function satisfies all these properties, we 
say it is a metric [BIRK70]. Thus by using 
a difference function, we could formulate 
our problem as finding all the strings t in T 
which are closer to the search string s than 
some threshold ~. Alternatively, we could 
find the N strings t which are closest to s, 
that  is, for which d(s,  t) is smallest. 

Most string matching problems will of 
course involve both equivalence and simi- 
larity. That  is, there is both an equivalence 
relation on the set of strings, which groups 
them into equivalence classes, and a simi- 
larity function or difference function be- 
tween strings. Misspellings and mistypings 
of natural language are of a combined kind. 
There is an optional variation which is un- 
important, for example, the use of spaces 
for formatting and (perhaps) uppercase let- 
ters; and there is variation which must be 
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classed as error. With this hybrid problem, 
the similarity must be taken between equiv- 
alence classes. Where the similarity func- 
tion or difference function is between 
strings, then it should be between canonical 
forms; this could influence the choice of 
canonical form. 

3.2 Measures of Similarity 

How do we assess whether two strings are 
similar to each other? How do we quantify 
this similarity or difference? 

A very early method for assessing simi- 
larity is the Soundex system of Odell and 
Russell [ODEL18], which reduces all strings 
to a "Soundex code" of one letter and three 
digits, declaring as similar all those with 
the same code. However, the relationship 
of having the same code is an equivalence 
relation, but  the string matching problem 
this proposes to solve is a similarity prob- 
lem. Not suprisingly, the Soundex method 
and other methods like it can sometimes go 
very wrong. Yet these approaches can pro- 
vide significant extra flexibility to systems 
that use them. The application of the Soun- 
dex method in a hospital patient index was 
recently reported [BRYA76],  and a related 
method has been used successfully in airline 
reservations [DAvI62]. 

Let us examine the Soundex method and 
its shortcomings. The idea is to transform 
the name into a Soundex code of four char- 
acters in such a way that like-sounding 
names end up as the same four characters. 
The first character is the first letter of the 
name. Thereafter numbers are assigned to 
the letters as follows: 

0 A E I  O U H W Y  1 B F P V  
2 C G J  K Q  S X Z  3 D T  
4 L 5 M N  
6 R 

Zeros are removed, then runs of the same 
digit are reduced to a single digit, and fi- 
nally the code is truncated to one letter 
followed by three digits. Note that while 
DICKSON and DIXON are assigned the 
same code of D25, RODGERS and 
ROGERS are not assigned the same code. 
And what of like-sounding names HODG- 
SON and DODGSON? 

Related approaches have been taken by 

Blair [BLM60] and Davidson [DAvI62]. 
Both defined rules for reducing a word to a 
four.letter abbreviation. Davidson, whose 
application was airline reservations, then 
appended to the abbreviation of the family 
name, the letter of the first name. So far 
these methods are very similar to the Soun- 
dex method, but  they go further and intro- 
duce aspects of similarity. Blair did not 
allow multiple matches, and if they oc- 
curred, used longer abbreviations to resolve 
the ambiguity. He thus found the best 
match, provided that it was close enough. 
Davidson, by contrast, allowed multiple 
matches but  insisted on finding at least one 
match by approximately matching the ab- 
breviations looking for the longest subse- 
quences of characters in common. 

3.2.1 The Damerau-Levenshtein Metric 

Damerau [DAME64] tackled the problem of 
misspellings directly, concentrating on the 
most common errors--namely, single omis- 
sions, insertions, substitutions, and rever- 
sals. He used a special routine for checking 
to see if the two given strings differed in 
these respects. This work stands out as an 
excellent early work: the author has ana- 
lyzed the problem clearly, and made his 
solution fit the problem. Damerau's algo. 
rithm has since been used by Morgan 
[MORG70]. 

Damerau had only considered strings in 
which a single change had occurred. The 
idea can be extended to consider a sequence 
of changes of substitutions, deletions, inser- 
tions, and possibly reversals. By using se- 
quences of such operations any string can 
be transformed into any other string. We 
can take the smallest number of operations 
required to change one string into another 
as the measure of the difference between 
them. Given two arbitrary strings, how do 
we find this difference measure? 

Once the problem has been formulated 
as an optimization problem, standard opti- 
mization techniques can be applied. In 1974 
Wagner and Fischer [WAGN74a] published 
a dynamic programming method. To moti- 
vate this method, consider the example of 
ROGERS and HODGE. Assume that 
somehow you have found the best matches 
for all the substrings ROGER and HODG 
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(with difference 4), ROGER and HODGE 
(with difference 3), and ROGERS and 
HODG (with difference 5), and you are H 
about to consider the best match for 
ROGERS and HODGE. If the last two 
characters are to be matched, then the ] 
score will be 5, 4 from the ROGER/HODG 
match and 1 for the mismatch of S and E. / 
If the S will be unmatched at the end of 
ROGERS and treated as an insertion/omis- / 
sion, then the score will be 4, 3 from the 
ROGER/HODGE match and again 1 from I 
the insertion/omission. If the E at the end 
of HODGE is treated as an insertion/omis- E 
sion then the score will be 6. Thus the best 
match of ROGERS and HODGE is 4, the 
smallest of these three alternatives. 

Generalizing the idea of this example 
leads to the dynamic programming method. 
A function f( i ,  j )  is calculated iteratively 
using the recurrence relations below: f( i ,  j )  
is the string difference for the best match 
of substrings s~s2s3 . . .  s, and t~t2t3 . . .  t~. 

f(0,  0) ffi 0 

f ( i ,  j )  = m i n [ f ( i  - 1, j )  + 1, 
f ( i , j -  1) + 1, 
f ( i  - 1 , j  - 1) + d(s , ,  6)]  

d(s,, t~)ffiO if s , = 6  

= I otherwise. 

where 

Here we assume insertion, omission, and 
substitution are each assessed a "penalty" 
of 1. This method can be represented as a 
problem of finding the shortest path in a 
graph, as is shown in the example of Figure 
2. It does not, however, take into account 
reversals of adjacent characters. 

This basic method can be extended in 
several directions, Lowrance and Wagner 
[LowR75] have given an extension to allow 
general reversals of order. Transposition of 
adjacent characters is a special case, and 
the recurrence relation above is quite easily 
extended to cope with this, by adding to 
the minimization the term 

f ( i  - 2 , j  - 2) + d(s,-, ,  6) + d(s,, t~_,), 

which allows for the transposed neighbors 
that do not match exactly. It is clearly also 

M I L L E R 
(0, (2) ----~ (0,1) ----~(0,2) - - -~  (0,3) - . ~  (~ 0 - - - ) '  {0,5) ---') ' (0,6) 

o ~  ~ \  2 \  3 \  ",,. s \  

(1 ,0 ) .~ .  (1,.~) - - -~  (1,2)--.--~(1,3)----~(1,4)--~ (1,5)---.~(1,6) 

(3,q).....~(3,1)..-~(3,2)..~m.(3,t)-....~(3,41-...~(3 ;1...--.~ (3,61 
3.\ ~.\ ? \  1-% 2 \  \ 

(4,0)..--~(4,1)....~(, 2).--.~(4,3)...~(4e4)...~(4 i)--...~(4,6) 
4 \  4 \  \ 2\ x \  \ 3. 

1 o --1 " 1  l l 

/ 1 / 1 ~1 /~'1 /~'0 \1  l 
(6,0)..~-b.(6,-1)-....~(( 2)---.),(5,.3).--..>.(6,4).~...),(6 ;)---.),(6,6) 

6 ~  6 ~  ~ 4N 3 N  ~ 3 

(a) 

best match 
114 I L L E . . - / - / / ,  

(b) 

FIGURE 2. (a) Example of the comparison of two 
strings. The two strings are shown along the top and 
down the side. Each node of the graph is labeled, 
(i, j )  as appropriate, and below the label is shown 
the value of f(i, j)  for tha t  node. The weights along 
the diagonal edges are the  d(s~, 6) values, and along 
the horizontal and vertical edges they are the  pen. 
alty values, here set to 1. (b) The  best match occurs 
with a difference of 2, the value of f(7, 6), and the 
manner  of this best  match  can be deduced from the 
shortest  path, which is drawn in heavy lines. 

possible to allow multiple character 
matches, for example CKS and X, but no 
work known to us makes this extension. 
Such an extension would be very necessary 
for comparisons of transliterations, where 
multiple characters in one language fire. 
quently represent one sound or letter in 
another language. 

Another direction of generalization is to 
allow for substitutions and even insertions 
and deletions to have different weights, as 
a function of the character or characters 
concerned. Thus, for example, d(i, y) could 
be small while d(i, f) could be large. No 
table of letter similarities has been pub- 
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lished as far as is known, but a table of 
phoneme similarities was given by Newell 
et al. [NEWE73]. Instead of modeling pho- 
netic similarities, the difference function 
could model miskeying by taking into ac- 
count adjacency on the keyboard--for ex- 
ample, an "a" is often mistyped as an "s." 

This distance function and its dynamic 
programming solution were in fact devel- 
oped much earlier in the Soviet Union 
within the fields of coding theory [LEVE66] 
and speech recognition [VINT68, VELI70]. 

The primary objective in speech recog- 
nition is to compensate for different speeds 
of speaking and thus stretch or compress 
the string of phonemes in order to find a 
best match. This is often called "elastic 
matching" [DOwL77, SAKO79, WHIT76]. In 
addition to having the difference between 
phonemes variable, a penalty can also be 
introduced for "off-diagonal" matching, to 
encourage linear matching but still allow 
elastic matching [ALBE67]. 

The string difference of Wagner and 
Fischer satisfies the triangular inequality 
and thus is a metric. The definition of the 
difference as the minimum number of 
changes required to convert one string into 
the other establishes the triangular ine- 
quality. All the variations discussed above 
also form metrics, although it is important 
that when nonequal character differences 
are used, these character differences them- 
selves form a metric. We refer to all dis- 
tance functions in this general class as 
Damerau-Levenshtein metrics, after the 
two pioneering authors in the field 
[DAME64, LEVE66]. 

The dynamic programming method takes 
on the order of n ~ operations to produce its 
best match where n is the length of the 
strings being matched. Wong and Chandra 
[WONG76] have analyzed this in detail, 
showing that it is the best possible unless 
special operations are used. As seen below, 
methods can be derived which are faster in 
some cases, but these use special methods. 
The order n 2 processing time is not unduly 
prohibitive, and one of the authors has used 
the method in near-real-time speech rec- 
ognition [DowL77]. The Damerau algo- 
rithm [DAME64, MORO70], which checks 
just for single errors, is of order n. 

One of the by-products of finding the best 

match between two strings by the Wagner 
and Fischer method is that it also yields 
the longest common subsequence. We could 
also work in the opposite direction: find the 
longest common subsequence first and then 
from this compute the difference. A number 
of techniques other than the dynamic pro- 
gramming method have been published 
[HUNT77]. These methods have best cases 
with better than n 2 complexity. Aho, 
Hirschberg, and Ullman [AHo76] have de- 
rived complexity bounds for the longest 
common subsequence problem and have 
shown that alphabet size is important. For 
finite alphabets (as in our problem) an im- 
provement on the n 2 limit should be possi- 
ble. Heckel [HECK78] has given a method 
for comparing files which is similar to the 
methods based on longest common subse- 
quences, but highlights subsequences which 
have been moved as a body. In some appli- 
cations, particularly fde comparisons, this 
may be thought to model the real differ- 
ences and similarities between the two 
strings more closely. 

3.2.2 Similarity as Probablfity 

Another approach to string matching and 
similarity is through probabilities and like- 
lihoods. This approach has been taken by 
Fu for error-correcting syntax analysis 
[Fu76]. He follows the conventions of com- 
munications theory using conditional prob- 
abilities [BACO73, PETE61] to model the 
production of errors, but there are problems 
with this approach. We present an alter- 
native formulation. 

Let us investigate the joint event (s and 
t) that string t is "correct" while string s is 
the observed string. We compute the prob- 
ability of this event P (s and t). To do this, 
let us imagine a generation process which 
jointly produces s and t from left to right. 
After this process has created the first i 
characters of s and the first j characters of 
t, we can postulate the generation of the 
next character of s or t or both, with the 
possible events being (where e is the empty 
string) 

{x and e) ffi the next character of s is x, 
and no character of t is gen- 
erated; 
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{e and y} = no character of s is gener- 
ated, and the next charac- 
ter of t is y; 

(x and y} = the next character of s is x, 
and the next character of t 
is y. 

These events exhaust the possibilities, and 
thus 

~ P ( x a n d y }  - - i  
x y 

where we sum over the alphabet including 
the possibility that x or y is the empty 
symbol e. Notice that in this generation 
model we have avoided cause and effect as 
embodied in conditional probabilities, be- 
cause of the difficulty of postulating a cause 
for inserted characters. 

With this model of the joint generation 
of s and t, we can compute a probability for 
any matching of s and t as the product of 
the probabilities of the individual generat- 
ing events. We can compute the best match 
as the most probable (most likely) match- 
ing using our dynamic programming algo- 
rithm, recasting the recurrence relations as 

q (0, O) = 1 

q( i , j )  ffi m a x [ q ( / -  1 , j )P{s ,  and e} 
q ( i , j -  1)P(e and ty}, 
q(i  - 1, j  - 1)P{s, and tj}]. 

Note that it is the most probable matching 
that we are finding, so q(n, m) is not P { s  
and t} but  P {s and t and M} where M is 
the best match between s and t. If we take 
logarithms of these recurrence relations 
and suitably adjust signs, setting 

f = --log q, 

D ffi - log  P {x and e} 

= - log  P {e and y}, 

d (x, y) = - log  P (x and y}, 

we obtain the earlier recurrence relations 
for differences. However, now the weights, 
the logarithms of the probabilities, must 
satisfy certain constraints. 

To find P {s and t}, we must sum over all 
possible matchings. This can be done iter- 
atively by computing the function 

Approximate Str ing Matching  • 391 

Q(O, O) ffi 1, 

Q( i , j )  ffi Q(i - 1,j)P{s~ and e} 

+ Q ( i , j  - 1)P{e and tj} 

+ Q ( i -  1 , j -  1)P{s, and tj}, 

P { s  and t} ffi Q(n, m). 

The similarity to the earlier dynamic pro- 
gramming recurrences is remarkable, al- 
though this computation has nothing to do 
with dynamic programming. To choose the 
best matching string t, we simply choose 
the t such that P{s  and t} is largest. P{s 
and t} is a true similarity function, satisfy- 
ing the property 

0 ~ P {s and t} _ 1, 

and generally being close to zero. 
In this model the various P {x and y} can 

be estimated experimentally by observing 
errors. Such observations have been made 
for phonemes [NEwly73] but  not for keying 
errors, and thus there is a need for studies 
in this area. The model is very appealing 
but  is open to objections because the gen- 
eration process could generate any pair of 
strings (unless some of the P {x and y} are 
zero), and in real applications the set T is 
a comparatively small subset of S. However 
this case can be modeled using regular 
grammars, and methods for these are sur- 
veyed in Section 4. 

3.3 Storing and Retrieving Similar Strings 

Our problem is to find approximate 
matches for a given searoh string s within 
a set T of strings which are stored explicitly. 
We must be able to retrieve a record asso- 
ciated with these approximate matching 
strings and extract associated information. 

The primary consideration is the size of 
the set to be searched. If the set is very 
small, then all the strings in the set can be 
tested in turn to see if they satisfy the 
search criterion (within a threshold ~, or 
one of the closest N). Often the set is large, 
perhaps containing millions of entries, and 
then something must be done to avoid ex- 
haustive searches. 

A secondary consideration is the relative 
importance of the approximate matching 
necessary. Suppose the problem requires 
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an exact match if one exists, and otherwise 
a best match. If exact matches are common, 
then it could be that the primary require- 
ment is that exact matches be quick to find, 
while finding approximate matches need 
not be that  efficient. In many applications 
we can expect 80 percent or more success 
for exact matches, following the figures of 
Bourne [Botm77] and Litecky and Davis 
[L]TE76]. However, in other applications, 
such as speech recognition, exact matches 
are most unlikely, and all storage should be 
structured for approximate matching. 

In his review Alberga [ALBE67] made no 
mention of these search considerations, but 
three years later Morgan [MoRG70] gave a 
sound discussion of these issues. Morgan's 
application was searching symbol tables, so 
he did not consider the extremely large sets 
that could be encountered in information 
systems. 

There are two basic approaches to 
searching large sets for approximate 
matches. The first is to structure the stor- 
age of the set T for efficient exact matching, 
and then when looking for a near match to 
generate all the strings similar to the search 
string and test whether these are in the set. 
The second approach is to structure the 
storage of the set T with approximate 
matching in mind using a partitioning strat- 
egy. First we look at exhaustive serial 
searches in order to establish some basis 
upon which to judge other methods. 

3.3. 1 Serial Searches 

Let us examine simple serial searches and 
obtain preliminary quantitative figures. We 
are going to compare and contrast methods 
by estimating the number of disk accesses 
required, using a very naive analysis. 

Let I T I be the number of strings that are 
stored, and let m be the (average) number 
of strings retrieved per disk access. Then a 
simple serial scan of the set T requires 

ITI 
Q1 -- disk accesses. 

m 

For example, if we take I T I ffi 2,000,000 and 
strings have an average length of 10 bytes 
and are stored on disk pages of 2K bytes, 
then m ffi 200 and Q1 -- 10,000. These ex- 
ample figures are used again in later com- 
parisons. 

3.3.2 Generating Alternatives 

Given a search string s, we can start by 
testing to see if s itself is in T and an exact 
match is possible. If this fails, then we can 
look for a member or members of T close 
to s by generating all the elements of S in 
the neighborhood of s and testing each of 
these in turn to see if it is in T. 

The elements of T need to be stored so 
that searching for an exact match is fast. 
The technology of exact matching is highly 
developed [KNUT73, MART75]. Thus test- 
ing for membership of T is easy, and can be 
coupled with the retrieval of the associated 
record. Suppose we use B-trees for our in- 
dexing [COME79]; following KNUT73 (page 
476) there will be approximately 

ITI+I  
1 + logrm/21 2 

disk accesses per index probe, that  is, per 
member of the neighborhood being tested. 
This is approximately four disk accesses for 
I T I = 2,000,000 and m = 200. 

Now if the alternatives to be tested con- 
sist only of a few synonyms, then the neigh- 
borhood is small, and this method would be 
very effective. A more common require- 
ment is the correction of misspellings or 
mistypings involving insertions, deletions, 
substitutions, and reversals, as discussed in 
Section 3.2. The members of the neighbor- 
hood could be generated, but  the neighbor- 
hood is now large. A systematic method for 
generating all the members of the neigh- 
borhood needs to be constructed. Riseman 
and associates [R]s~.74] have produced 
such an algorithm, though no details are 
known. The algorithm would be worth pub- 
lishing because the generation of the neigh- 
borhoods is a nontrivial combinatorial 
problem. 

These neighborhoods are very large. 
Consider a string s of length n with symbols 
drawn from an alphabet A of size k. Allow- 
ing for insertions, deletions, substitutions, 
and reversals of adjacent characters, we 
find the size of the neighborhood of strings 
with difference 1 from s is 

N(n ,  1) ~ (n + 1)k + n 
+ n(k  - 1) + ( n -  1) 

= k(2n + 1) + n -  1. 
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Equality holds provided no two adjacent 
characters are the same. The size of the 
neighborhood of distance 2 from s is 

N(n, 2) = N(n, 1) 2. 

If we consider testing all strings differing 
by only one error from a string of length 10, 
with a 26-letter alphabet, the neighborhood 
size is 565. If we have to use our index and 
access a disk page for each of these, we then 
require four disk accesses per string, or a 
total of 

Q2 ffi 2260 disk accesses 

which is about 4.5 times better than the 
exhaustive search case. However, to test for 
up to two errors, we find that 

Q2 = I million, 

which is disastrous. 
So, at first assessment, the idea of gen- 

erating all the strings in the neighborhood 
seems worthless. But  suppose we had some 
simple test which could be used to eliminate 
most of the members of the neighborhood 
before accessing the disk to look for the 
strings in T. All we need is a test for mem- 
bership of some set X which covers T. 

The only published test known to us is 
that of Riseman and Hanson [RISE74] and 
Ullman [ULLM77] discussed below. Their 
approach is ad hoc, but  clearly some idea 
of well-structured strings for English (say) 
could be derived, since some combinations 
of letters simply do not occur in English. 
Any structural test derived from the words 
or phrases involved would suffice. Struc- 
tural tests in the form of grammars would 
provide a very convenient method [GRIE71, 
HoPc66]. It has been claimed that over 40 
percent of possible consecutive letter pairs 
do not occur in English (Sitar, quoted in 
RISE74), which suggests that a sensitive 
test should be possible. Riseman and Han- 
son review a number of structural tests 
which are not based on grammars but on 
checking for the occurrence of sequences of 
letters within a word or the occurrence of 
particular letters at particular positions in 
the words. Their best test can detect simple 
errors with approximately 99 percent ac- 
curacy, but  this is only on small vocabular- 
ies and is expensive in storage. While Rise- 
man's methods, and those derived from him 
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[ULLM77], may not be ideal for the large 
sets of strings that  concern us here, they do 
indicate what should be possible. A quick 
test should at least be able to reduce by an 
order of magnitude the number of disk ac- 
cesses required and thus make matching to 
within a single error by generating alter- 
natives a viable method. 

3.3.3 Set Partitioning and Cluster Hierarchies 

In the section on exhaustive serial searches, 
the critical factor was the size of the set T. 
If we could partition T into subsets T1, T2, 
. . . .  and select only a few of these subsets 
for exhaustive searching, we should be able 
to reduce our number of disk accesses con- 
siderably. 

Morgan [MORG70] and Szanzer [SZAN69] 
have suggested partitioning by string 
length. Assuming that we are only looking 
for strings differing by only one error, then 
we need only search strings differing from 
the length of the search string by 1. This 
idea will not have a very significant impact 
but  may improve the search cost two- to 
fivefold. This is because strings in applica- 
tions, such as name indexes, do not vary 
much in length and have a very nonuniform 
distribution in length. 

Another idea would be to partition the 
set on the first letter. There may be no 
attempt made to compensate for errors 
in the initial letter, for example, Muth and 
Tharp [MUTH77]; Or the errors in the first 
letter may be searched for in some separate 
operation, as proposed by Szanzer 
[SZAS73]. 

Ideally any partitioning strategy should 
produce sets of the same size, and the 
search efficiency is sensitive to departures 
from a uniform distribution. The average 
number of disk accesses for exact matching, 
assuming each stored string is equally 
likely, is given by 

/ Number of disk * Probability of 1 
Q3 = ~ I accesses to search string / 

T \search T~ being in Ti / 

zIT, I I T ,  I 
, m I T I  

_ v ! _ T ±  
," ml Tl" 
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If we use some simple rule based on string 
length or leading letters, we inevitably 
come up against the uneven distribution of 
real data. Moreover, the use of data is very 
uneven. Knuth [KNuT73, pp. 396-398] has 
a stimulating discussion of this; a useful 
rule for us here is the 80-20 law, that 80 
percent of the activity appears in 20 percent 
of the file. 

Morgan [MORG70] also suggested a tech- 
nique for partitioning the set based on the 
first two letters 

Txy ffi {t in T such that t begins XY}. 

For the usual 26-1etter alphabet, this gives 
676 subsets. Of course, following our earlier 
remarks that 40 percent of pairs do not 
occur, many of these subsets will be empty. 
When searching for a string beginning PQ, 
for example, we would only need to search 
the 77 subsets where at least one of the 
defining letters was a P or a Q (that is, 
subset PQ for an exact match on the first 
two letters, P? for substitution or deletion 
of Q or a reversal of the second and third 
letters, ?Q for substitution of P, QP for 
reversal of PQ, and Q? for deletion of P). 
Making the most favorable uniformity as- 
sumptions, this means at most a ninefold 
speedup. Extending the idea to the first 
three letters, we can hope for as much as a 
200-fold speedup on single errors, but the 
number of partitions is beginning to get out 
of hand. We could do some hashing how- 
ever, to randomize and superimpose subsets 
as Morgan suggested. 

So far these methods have not appeared 
very effective. Though the exact search be- 
havior is not known, they appear to have a 
search time proportional to I TI, since the 
partitioning strategy is fixed and indepen- 
dent of I T I- What we would like ideally is 
a search behavior of order log I T I, as is 
found for exact matches. 

An interesting search method has been 
suggested by Shapiro [SHAP77] in the con- 
text of general pattern recognition. The 
method consists of imposing a linear order- 
ing on all the elements of the set of patterns 
to be searched, finding a most likely match 
by using binary searching to find a candi- 
date match, and then searching in that 
neighborhood for a best match. The linear 
ordering is determined by the difference 

from some reference point, and it is this 
difference which gives the means for com- 
puting bounds that keeps the search to the 
neighborhood of the first candidate match. 
Because the string difference metric does 
not provide fine discrimination, the method 
is unlikely to work well for strings. 

Knuth [K~uT73] has suggested a method 
based on the observation that strings dif- 
fering by a single error must match exactly 
in either the first or the second half. He 
does no more than hint at a method of 
exploiting this observation, but one method 
might be the following. Index the set using 
both the first and last halves-- the first and 
last In/2] - 1 characters--so that  the cen- 
tral two characters are omitted from an 
even-length string to allow for central re- 
versals. For retrieval try the first and last 
halves, both the [n/2J and the [n/2J - 1 
first or last characters, so as to allow for 
insertions and deletions. Thus we retrieve 
two sets of strings which must be serially 
searched to find any actual matches to 
within a single error. (Notation: [xJ is the 
greatest integer less than or equal to x, and 
[y]  is the smallest integer greater than or 
equal to y.) This method will be sensitive 
to the actual distribution of the strings but  
does seem very promising. No theoretical 
or empirical results concerning its effective- 
ness are known. 

Log] T I search behavior is obtained in 
tree-structured searches. Muth and Tharp's 
method [MUTH77] forms a character tree, 
but since they then backtrack up the tree 
on encountering an error, much of the ad- 
vantage of the tree is lost. The only sub- 
stantive gain they do get is by partitioning 
on the first character, but  they do not at- 
tempt to correct errors in that first char- 
acter place. 

A general tree-structured approach has 
been suggested by Salton and his associates 
for use in information retrieval [SALT68, 
SALT78]. The method uses the similarity 
distance function as its basis for partition- 
ing, dividing the set into "clusters" of 
strings which are simlar to one another. 
That  is, strings within the same subset Ti 
have d(s, t) small, and strings in different 
subsets have d(s, t) large. The automatic 
formation of subsets with these character- 
istics is known variously as clustering or 
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FIGURE 3. A hierarchy of clusters, with TI, T2, and 
T3 contained in T6, T4 and Ts contained in Tv, and 
T6 and T7 contained in Ts, the whole of T. 

classification (see, for example, the review 
by Cormack [CORM71]). This method 
shows promise of approaching the log[ T[ 
goal and is described in some detail. 

A hierarchy of clusters is formed, and 
each cluster T, is described by a center c~ 
and a radius r,: 

T, ffi ( t : d ( t ,  c,) <~ r, and t in  T}. 

Clusters at higher levels contain clusters 
below them, and clusters at a particular 
level could overlap. Figure 3 illustrates this. 

To search for all the strings within ~ of 
the search string s, we start at the highest 
level and search within a cluster T,(c,, r,) if 
and only i f  d ( s ,  c,) ~ r~ + ~. This guarantees 
finding al l  t in T with d(s ,  t) <- ~, provided 
that the difference function satisfies the 
triangular inequality. 

To search for the best match (or N best 
matches), we use what is basically a branch- 
and-bound technique [HALL71]. For any 
subset T,(c,, r,) we have the bounds 

d(c, ,  s) - r, <~ d(s ,  t) <~ d(c, ,  s) + r, 

for all t in T; this follows from the triangular 
inequality. We search in the most promising 
subset (the one with the minimum value of 
d(c~, s) - r,) to find the best candidate 
match t* and then search in the next best 
remaining subset provided that it could 
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possibly yield an improvement, that  is, pro- 
vided that  d(c, ,  s) - ri ~ d (s ,  t*).  Thus 
successively better matches t* are found 
until it is evident that  no further searching 
is necessary. Both variations of the search 
use the triangular inequality to guarantee 
the search algorithms. 

Alternatively, the decisions to stop 
searching can be based upon empirically 
determined parameters, which is the ap- 
proach taken by Salton. 

Let us illustrate the search process with 
a small string searching example. Figure 4 
shows the differences for a set of 15 names, 
while Figure 5 shows the set divided into 
five clusters, including one miscellaneous 
cluster to accommodate the two strings 
which did not happily fit into any other 
cluster. Figure 6 then shows two searches 
for all matches within a given tolerance. 
Figure 7 shows a search for a best match. 
Note that the miscellaneous set is always 
searched. 

It is necessary to define insertion and 
deletion strategies, as well as the search 
strategy. Salton and Wong describe an in- 
sertion method which they claim provides 
a good basic clustering method, but they do 
not describe a deletion method. They liken 
their approach, quite correctly, to B-trees 
[KNUT73, COME79] without pursuing the 
analogy. 

Assuming a balanced tree, or reasonably 
uniform tree, the average depth of the tree 
will be of order log[ T{. But the search 
methods reported above do not only search 
a single path from root to leaf, they also try 
other branches if these are found to be 
necessary. These other paths could com- 
pletely destroy the potential log] TI behav- 
ior, and in the worst case lead to an ex- 
haustive search. Salton and Wong suggest 
limiting the extra searching at each level in 
the hierarchy to some small number of 
branches p. Suppose that the tree branches 
k ways at each level, and at each level we 
search p of these branches. Clearly p is less 
than k. We must search p branches at each 
of the 1ogk{ T[ levels in the tree, and thus 
must search 

plog, ITI _____ [ T{log,p 

strings at the lowest level. If, for example, 
p ffi ~/k, then logkp ffi ½, and we must s e a r c h  
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JOHNSON 
ALWOOD 
FENLON 

BUBENKO 
ROGERS 
SENKO 

ROGET 
GOODWIN 
WOODRUM 
HINTON 
HODGES 
SLOANE 
RODGERS 
DODGSON 
GOODRUM 

J A F B R S R G W H H S R D G 
0 L E U O E O O O I O L O O O 
H W N B G N G 0 O N D O D D O 
N 0 L E E K E D D T G A G G D 
S O O N R O T W R O E N E S R 
O D N K S I U N S E R O U 
N O N M S N M 

- 6 4 6 6 5 6 5 6 4 6 7 6 3 6 
6 - 5 7 6 5 6 6 5 5 6 5 7 6 6 
4 5 - 5 6 3 6 6 7 3 6 6 7 5 7 

l 
6 7 5 6 3 6 7 7 6 7 6 7 7 7 
6 6 6 6 - 5 2 6 5' 6 3 6 1 5 5 
5 5 3 3 5 - 5 7 7 4 6 5 7 6 7 

6 6 6 6 2 5 - 6 6 6 3 5 3 5 6 
5 6 6 7 6 7 6 - 4 6 5 6 6 6 3 
6 5 7 7 5 7 6 4 7 5 6 6 6 1 
4 5 3 6 6 4 6 6 7 - 5 6 7 5 7 
6 6 6 7 3 6 3 5 5 5 - 5 2 4 5 
7 5 6 6 6 5 5 6 6 6 5 6 7 6 
6 7 7 7 1 7 3 6 6 7 2 6 - 4 6 
3 6 5 7 5 6 5 6 6 5 4 7 4 6 
6 6 7 7 5 7 6 3 1 7 5 6 6 6 - 

FIGURE 4. Difference matrix for a set of 15 names. The differences shown are the best match differences, 
which have been found using the simple dynamic programming approach. 

Cluster Center c,, Radius r, Members 

TI GOODRUM, 3 WOODRUM, GOODRUM, GOODWIN 
T~ RODGERS, 3 ROGERS, RODGERS, ROGET, HODGES 
Ta SENKO, 4 FENLON, HINTON, SENKO, BUBENKO 
T4 JOHNSON, 3 JOHNSON, DODGSON 
T5 MISCELLANEOUS ALLWOOD, SLOANE 

FIGURE 5. Clusters formed from the names of Figure 4. 

J I T  I strings. While we do not  have a logl T I 
law, we have certainly done bet ter  than a 
linear search. 

Consider our example where IT[  •ffi 
2,000,000. Suppose our index branches 100 
ways at each level, and the index is ar- 
ranged with the specification that  all 100 
ways stored are on one disk page, as in B- 
trees. Suppose further tha t  we only search 
at most  ten branches at  any level. T h e n  our  
law above says we must  search some 1400 
strings, or seven pages at  200 strings per 
page. Including the index, this requires 
around ten disk accesses in total. 

This approach will only be good if the 
clustering is good and ensures tha t  only a 
few of the branches need searching. And 
this clustering must  be preserved under  
insertion and deletion. There  is a real need 

for some research here to determine what  
clustering proper ty  is necessary to ensure a 
good search behavior, and what  insertion 
and deletion algorithms will guarantee 
preservation of this property.  

At  the momen t  too little is known about  
this cluster hierarchy method  for the use of 
it to be anything bet ter  than a gamble. But  
if somebody did gamble and validate the 
method empirically, tha t  would be worth  
reporting. 

4. ERROR CORRECTION USING 
SYNTACTIC STRUCTURE 

Instead of  the set of strings being stored 
explicitly, as has  been assumed up to this 
point, the set could be defined by a collec- 
t ion of s tructural  rules such as a grammar.  
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Search I Search 2 

Search string s G O O D G E  FENKON 

1 Tolerance 

Distance of T~ 
search string T2 
from center T8 
of cluster T4 

Clusters requiring 
further searching 

4 7 
6 2 
6 4 

T~,T2 
T~ 

Ts, T, 
T~ 

Strings found None FENLON 
SENKO 

FIGURE 6. Two searches of the cluster hierarchy of 
Figure 5. 

If  a string fails to conform to the rules, it  is 
in "error ."  By  suitable use of the rules, the 
error  can be "corrected"  and the string 
identified. 

Riseman and Hanson  [RisE74] describe 
a set of rules based upon the  occurrence or 
nonoccurrence of part icular  sequences of 
letters. T h e  sequences can be ei ther  adja- 
cent  let ters  occurring a t  any  point  in the 
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string or they  can be let ters  occurring at  
fixed points in the  string. T h e  application 
is error  correct ion following optical char- 
acter  recognition. Riseman and Hanson  ac- 
quire their  rules direct ly f rom the set of  
strings tha t  are permit ted.  F ro m  the partic- 
ular rules tha t  are violated, they  deduce a 
correct ion which when applied will make  
the string conform to the  rules. However  a 
proport ion of  the  strings in er ror  (as high 
as 30 percent)  are "uncorrectable"  because 
no correct ion can be readily deduced f rom 
the violated rules. 

All o ther  methods  of  s t ructural  error  cor- 
rect ion are based upon a grammar.  Follow- 
ing Hopcrof t  and Ullman, we use the  no- 
tat ion G ffi (Vs, VT, P,  S )  for a grammar,  
where VN are the nonterminals,  VT are the  
terminals, P the productions,  and S the 
s tar t  symbol  in V~ [HoPc69]. In error-cor- 
recting parsing, instead of  rejecting a string 
found to be in er ror  during parsing, the  
string is corrected to tha t  m em b er  of  L(G), 
the  language generated by  the  grammar  G, 
which is closest to the  given string. 

A halfway stage to full error  correction is 

HOODGUS 
(a) 

Cluster 

T~ 
T2 
T3 
T4 

d(s, cj d(s, c,) - 8, 

(b) 

Step Search Strings found 

Ts 
T~ 
T2 
T4 

SLOANE 
GOODRUM WOODRUM 
HODGES 
Know that we cannot find 
a closer match, but could 
find an equal match. 
Continue only if all best 
matches required, then 
STOP. 

Differences 

{c) 

HODGES, difference 2. 
(d) 

FIGURE 7. Finding a best matching string: (a) search string; (h) results of 
comparisons with cluster centers; (c) steps in search for the closest match; (d) 
result. 
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error detection and error recovery [EGGE72, 
GRAH75, GRIn71, LITE76, MICK78, SMIT70, 
Wmc76]. In compilers an error should be 
detected as early as possible, and a mean- 
ingful error message output which will help 
the user to correct the error himself. Then 
the compiler should recover and keep on 
parsing so as to subject the complete pro- 
gram to syntax checking. In order to re- 
cover, the compiler must compensate for 
the error and thus make some "correction," 
but  it does not necessarily produce an al- 
ternative complete program which is cor- 
rect and which could be executed. 

Error-correction parsing goes the whole 
way and produces a program string which 
is valid and can be executed. An illustration 
at this point may help. Morgan reported an 
error-correcting system used with the 
CUPL compiler at Cornell University 
[MORG70]. The card deck 

/JOB 2065 MORGAN, H 10S 30P 
/CUP6 
READ ROWSUB, COLSUB, NOCOLS 
MATSUB ffi 

ROWSUB + COLSUB * NOCOLS 
WRITE MATSBU 
STPO 

*DATA 
3.0 4, 5 

/END JOB 

contains a keypunching error in one job 
control card and two errors in the program. 
Their system would have corrected these 
errors without requiring a rerun. Of course, 
such corrections may be wrong, and in fact 
dangerous in that they do not agree with 
the programmer's original intention, but  
Morgan's system was used favorably. 

Error correction during language analysis 
has been widely reported, starting with 
some very early ideas by Irons [IRo1~63] 
and Freeman [FREE63]. There was then a 
lapse of several years before Morgan's work 
and an ad hoc approach by James and 
Partridge [JAME73], and then error correc- 
tion in languages was put  on a sound theo- 
retical footing. A theoretical analysis had 
been given by Hopcroft and Ullman 
[HoPc66] in 1966, and this was followed by 
full error-correction techniques for most 
classes of languages being reported in the 
literature during the early 1970s. 

Regular languages were treated by Wag- 
ner in 1974 [WAGN74b] using a dynamic 
programming approach similar to the one 
developed with Fischer for simple string 
matching [WAGN74a]. A function f (A,  i) is 
defined. This measures the best match be- 
tween the first i symbols of the input string 
and the strings generated by starting with 
the start symbol S and ending with the 
nonterminal A. The recurrence formulas 
for computing f (A,  i) foll~)w directly from 
the grammar. Terminal productions A --. a 
are rewritten as A --, a# ,  where # ~ VN O 
VT. The recurrence relations are 

f ( s ,  o) = o, 

f ( A , i )  ffi min{  m i n A [ f ( B , j - - 1 )  

+ d(s,, a)], 
f (A.  i - 1) + 1, 

rain [ f (B,  i) + 11} 
allB B.-.aA 

f (# ,  n) ffi difference of the best match, 

where again following the notation of Sec- 
tion 3.2 

d(s,, a) ffi 0 if s, ffi a 

ffi 1 otherwise, 

and the insertion/omission penalty is 1. 
This algorithm for regular grammars has 

complexity which is linear in the length of 
the input string, but  of course depends upon 
some function of the size of the grammar. 
Independently, and at about the same time, 
Hall and Dowling discovered the same al- 
gorithm and applied it to speech recogni- 
tion [DOWL74]. Figure 8 gives a matching 
graph for regular grammars; there is an 
obvious similarity here with Figure 2. 

Context-free languages, because of their 
importance for programming, have received 
considerable attention [AHO72, Fu76, 
FUNG75, LEVY75, LYON74, TANA78, 
WAGN72]. Aho and Peterson [AHo72] add 
error productions to their grammar, and 
select derivations with fewest error produc- 
tions using an Earley parser [EARL70]. 
Lyons [LYON74] by contrast tackles errors 
directly using dynamic programming prin- 
ciples, without the need to resort to error 
productions. He also uses the Earley parser. 
Levy concentrates on local corrections to 
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gain parsing speed, while Tanaka and Fu 
use a Cocke-Younger-Kasami parser and 
Chomsky normal form. Teitlebaum, by con- 
trast, takes an algebraic approach to lan- 
guage analysis, modeling the error-produc- 
tion process by a weighted sequential trans- 
ducer, to produce an elegant method for 
error correction. While recognition of a con- 
text-free language theoretically can be done 
as fast as matrix multiplication (O(n  2"61) 
[PAN79]), normal parsing methods are of 
n 3 complexity [HoPc69, EARL70], and by 
suitable and careful choice of method, the 
error-correction parsers can also have com- 
plexity n 3 [LYON74, TEIT76, WAGN72]. 
Fung and Fu [FUNG75] consider only sub- 
stitution errors, allowing for different prob- 
abilities for different substitutions of char- 
acters, and thus obtain probabilities for 
transformations from one string into an- 
other. They give an error-correcting parser 
which returns the string with highest prob- 
ability. 

Using probabilities, one can take into 
account the frequency with which particu- 
lar linguistic constructs are used. This is 
done by Fu, who adds probabilities of use 
to each production (a stochastic grammar) 
and adopts the Aho and Peterson algorithm 
to handle these probabilities, selecting the 
most likely derivation for a given string. 
Clearly Fu's method can easily be applied 
to regular grammars. A regular grammar 
could be arranged to generate a particular 
set of strings and thus overcome the objec- 
tions to probabilistic string similarity at the 
end of Section 3.2. 

Best-match recognition in context-free 
languages has also been studied in speech 
recognition. A number of systems are sur- 
veyed by Erman et al. [ERMA80]. The pro- 
cess of recognizing connected speech is rep- 
resented as problem solving using a se- 
quence of "knowledge systems," where the 
selection of a best match is heuristic. This 
process is clearly equivalent to a bottom-up 
parse, and the discussion of the speech rec- 
ognition methods surveyed could be com- 
plemented with a comparison based on lan- 
guage analysis. 

Correction for context-sensitive lan- 
guages has been investigated by Tanaka 
and Fu [TANA78]. They use the Cocke- 
Younger-Kasami parser, and although they 
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G ', ({S,A,B}, {a ,b} ,  I$- taA ", A.,t.aB, B..H~, B*.,,b~, $) 

(a) 

a 

b 

a 

2 

4) "~ (A, 4) 

(s, o ) , . , , , ~ ( A  i o)......._~(s, o) -(e~ o) 

IS, llmmmmmL~tl~, 1) "- .~1~, 11 
I ~ 0.. I /  1 ; 

21, ~1@, 21 

i 
~, 41 "~ (Be 4)mmmmmm)(~, 4) 

2, k 2 J 1  2 

(bL 

abaa abaa abaa 

(c) 
FIGURE 8. Example of error correction in a regular 

grammar. A graphical representation is used; the 
regular language is represented by a s~te-transition 
graph in (a) and this is combined with the matching 
string "abaa" in (b) to give a graph in which the 
best match problem has again become a shortest 
path problem. The edge weights axe the mismatch 
penalties, and all horizontal and vertical paths have 
a weight of 1. The diagonal edges have d ( s ,  a) . .  0 
ff s, = a, and I otherwise. Each node is labeled with 
its "coordinates," and the smallest mismatch from 
(S, 0) to that node. The manner of the three best 
matches, shown by the heavy lines, is given in (c). 

do not actually use dynamic programming, 
they formulate their solution~ in an equiva- 
lent way. 

5. SUMMARY 

When tackling a string matching problem 
where retrieval is to be achieved even with 
nonexact matches, it is important to ascer- 
tain the source of the variation leading to 
the need for nonexact matching. 

Variations could be legitimate, as in the 
use of alternative spellings or formatting 
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characters. This leads to equivalence 
classes and the methods reviewed in Sec- 
tion 2. The methods available are highly 
satisfactory, resting on conventional exact- 
matching technology. Canonical forms of 
equivalence classes should be used where 
possible. 

However variation could be due to errors 
and like processes. Examples are typing 
mistakes, spelling mistakes due to mishear- Aso72 
ing, synonyms, and the whole range of en- 
coding problems associated with speech 
recognition. This leads us into the similar- 
ity problems reviewed in Section 3. First it AKo75 
is necessary to construct a difference func- 
tion which correctly models the source of 
variation; we have seen a number of pow- Ano76 
erful difference functions based on dynamic 
programming and on probabilities. 

The real difficulties begin when we must ALBE67 
search a large set of strings for an approxi- 
mate match, guided by our difference func- 
tion. While there are a number of ideas BACO73 
about how to approach this problem, there 
are no well-established or general ly appli- BELL76 
cable methods .  Mos t  me thods  described are  
a imed  a t  compensa t ing  for  mis typing  er- 
rors. T h e r e  is a grea t  need here  for research  BIRK70 
to give the  current ly  proposed m e t hods  a 
f i rm theoret ica l  foundat ion  and  to genera te  BLAI60 
a l te rnat ive  methods .  

One class of  str ing match ing  p rob lems  is 
concerned with  finding the  bes t  m a t c h  in a BouR61 
set of strings defined by a grammar. This 
error-correcting problem is briefly reviewed 
in Sect ion 4. BouR77 

Finally, i t  is interest ing to note  t ha t  dur-  
ing the  p repara t ion  of this review, a spelling 
correct ion p rog ram for mic rocompute r  sys- BOYE77 
terns was announced  in the  popula r  com- 
pu te r  press  [COMF80]. T h e  p rog ram  can 
correct  some spelling mis takes  it  finds in its BRYA76 
input  text  using a 25,000-word list supplied 
by  Oxford Univers i ty  Press  and  draws at-  
tent ion  to those  it  can recognize but  not  COME79 
rectify. After  the  comple te  t ex t  has  been  

COMPS0 scanned,  an opera t ion  which processes 
abou t  60 words per  minute ,  a list of  al tera-  CORM71 
tions with references  is given. Wi th  this  
facility now avai lable on mic rocompu te r  
systems,  it  should not  be  too long before 
some of  the  techniques  out l ined in this 
pape r  do find the i r  way into large commer -  
cial informat ion re t r ieval  systems.  DAVI62 
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