
Approximate String Matching

PATRICK A. V. HALL

SCICON Consultancy International Ltmited, Sanderson House, 49 Berners Street, London WIP 4AQ,
England

GEOFF R. DOWLING

Department of Computer Science, The City Unwersity, Northampton Square, London EC1V OHB, England

Approximate matching of strings is reviewed with the aim of surveying techniques
suitable for finding an item in a database when there may be a spelling mistake or other
error in the keyword. The methods found are classified as either equivalence or similarity
problems. Equivalence problems are seen to be readily solved using canonical forms. For
sinuiarity problems difference measures are surveyed, with a full description of the well-
establmhed dynamic programming method relating this to the approach using
probabilities and likelihoods. Searches for approximate matches in large sets using a
difference function are seen to be an open problem still, though several promising ideas
have been suggested. Approximate matching (error correction) during parsing is briefly
reviewed.

Keywords and Phrases: approximate matching, spelling correction, string matching, error
correction, misspelling, string correction, string editing, errors, best match, syntax errors,
equivalence, similarity, longest common subsequence, searching, file organization,
informatmn retrieval

CR Categories: 1.3, 3.63, 3.7, 3.73, 3.74, 4.12, 5.42

INTRODUCTION

Looking up a person's name in a directory
or index is an exceedingly common opera-
tion in information systems. When the
name is known in exactly the form in which
it is recorded in the directory, then looking
it up is easy. But what if there is a differ-
ence? There may be a legitimate spelling
variation, or the name may be misspelled.
In either situation the lookup procedure
will fail unless some special search is un-
dertaken. Yet this requirement of searching
when the string is almost right is very com-
mon in information systems.

This paper shows builders of information
systems what is possible in finding approx-
imate matches for arbitrary strings. Exist-

ing methods are placed within a general
framework, and some new techniques are
added.

Behind this string matching problem is a
yet more general problem of approximately
matching arbitrary information items or
groups of items. This survey avoids this
very general problem, although many of the
methods surveyed are applicable. We con-
centrate instead on the matching of a single
string within a set of Stl~gs. Strings have
special properties, and string matching has
many important applications.
Many investigations of string matching

have concentrated on searching for a par-
ticular string embedded as a substring of
another, to satisfy retrieval problems such

Permission to copy without fee all or part of thin material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notme Is given tha t copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1980 ACM 0010-4892/80/1200-0381 $00.75

Computing S u]rveys~Vol~ 1,2, N~ 4, December 1980

382 • P. A. V. Hall and G. R. Dowling

CONTENTS

INTRODUCTION
1. REASONS FOR APPROXIMATE MATCHING
2. EQUIVALENCE

2.1 The Equivalence Problem
2 2 Storing and Retrieving Equivalent Strings

3. SIMILARITY
3.1 The Similarity Problem
3.2 Measures of Similarity
3.3 Storing and Retrieving Snndar Strings

4 ERROR CORRECTION USING SYNTACTIC
STRUCTURE

5. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

in T that are "sufficiently like" s, or the N
strings in T that are "most like" s. The
intuitive concepts "approximate," "suffi-
ciently like," and "most like" need eluci-
dation. We shall see two broad categories
of the problem in Sections 2 and 3, where
the idea of "like" is regarded as "equiva-
lent," or as "different but similar."

A secondary factor in our problem is the
representation of the set of strings T. This
set can either be represented extensionally
as an enumeration of the strings in the set
(that is, all the strings are explicitly stored),
or intensionally as a set of rules such as a
grammar. Most of the discussions in this
paper are in terms of extensional sets. Dis-
cussion of intensional sets is delayed until
Section 4.

as finding a document whose title mentions
some particular word. Methods for finding
a substring within another string have cul-
minated in the elegant method of Boyer
and Moore [BoYE77, GALI79] where by pre-
processing the substring it is possible to
make large steps through the string to find
a match in sublinear time on average. Ri-
vest [RIve.77] has shown that the worst
case behavior must take linear time.

Instead of searching for a single substring
one could search for a "pattern." This fa-
cility is common in string processing lan-
guages (it is illustrated by the language
SNOBOL, which is documented in GIMP76)
and has been developed by Aho and Cor-
asick [AHO75] and Knuth, Morris, and
Pratt [KNUT77]. However, general pattern
matching is equivalent to asking wbether
the string conforms to a grammar, and thus
the algorithms involved are parsing algo-
rithms (see, for example, HoPc69).

The basic problem we examine is differ-
ent. It is as follows.

Problem: Approximate String Matching

Given a string s drawn from some set S of
possible strings (the set of all strings com-
posed of symbols drawn from some alpha-
bet A), find a string t which approximately
matches this string, where t is in a subset T
of S.

The task is either to find all those strings

1. REASONS FOR APPROXIMATE
MATCHING

Before describing the various approaches
to approximate matching in Sections 2, 3,
and 4, it is worth examining further the
reasons for approximate matching. There
are two very different viewpoints: "error
correction" and "information retrieval."

We can suppose that what should be
provided as a search string corresponds pre-
cisely to what has been stored in some
record or records. The search string does
not match because of some corruption pro-
cess which has changed it. The corruption
process has a magnitude associated with it,
and we can talk of large corruptions and
small corruptions. Furthermore we can
imagine that the string gets so badly cor-
rupted that it becomes similar or identical
to some other stored string. Thus if the
corruptions are larger than the differences
between correct strings, we must expect to
retrieve falsely, and only if we were to
weaken our retrieval criterion, would we
expect to be able to retrieve the correct
string as an outlying match.

We can think of ourselves as trying to
correct the errors introduced by the corrup-
tion, with the retrieval process being the
at tempt to correct the error, and with re-
trieval of a string which is not relevant
being an error. This corruption-correction
point of view is adopted in communication
theory [PETE61] and pattern recognition
[RISE74].

Computing Surveys, Vol. 12, No. 4, December 1980

Alternatively, we can take the viewpoint
of information retrieval: our search string
indicates, as best we can, the information
required. We could be unsuccessful in two
ways. There is the risk that unwanted rec-
ords will be retrieved, while required rec-
ords are missed. In conventional informa-
tion retrieval these two phenomena are cap-
tured by the notion of precision and recall
[SALT68, PAre77]:

• p r e c i s i o n - - p r o p o r t i o n of retrieved rec-
ords that are relevant;

• r e c a l l - - p r o p o r t i o n o f r e l e v a n t r e c o r d s a c -
tually retrieved.

It is assumed that the relevance of records
is known from other sources. These mea-
sures are not fully satisfactory, and Paice
[PAm77] suggests refinements. Recently al-
ternative information-theoretic measures
were proposed [RAD~.76]. Nevertheless,
precision and recall remain useful concep-
tually; we see that in general we can trade
one against the other. By being less exact-
ing in what is retrieved, recall can be made
to approach 100 percent at the expense of
precision approaching zero, and vice versa.
With retrieval based upon a similarity or
difference measure and a threshold, the
trade-off can be controlled by varying the
threshold; this is covered in Section 3.1. In
the information retrieval literature the im-
agery of precision and recall appears to
encourage ad hoc approaches, possibly be-
cause a correct analysis is very difficult and
something is better than nothing.

Before we move to consider these ideas
in further detail, we hope that two facts
have been seen emerging. First, we must
understand the sources of the corruptions
or variability that are requiring us to make
approximate matchings, and we must com-
pensate for them accurately. Second, we
must know something about the size of the
corruptions and adjust our retrieval crite-
rion accordingly, and expect that for large
corruptions we will get a degraded perform-
ance however we choose to measure it.

2. EQUIVALENCE

2,1 The Equivalence Problem

One notion of "approximate" and "like" is
e q u i v a l e n c e . If two strings which are super-

A p p r o x i m a t e S t r i n g M a t c h i n g ° 383

ficially different can be substituted for each
other in all contexts without making any
difference in meaning, then they are equiv-
alent.

Common examples of equivalence are al-
ternate spellings of the same word, the use
of spaces as formatting characters, optional
use of upper- or lowercase letters, and al-
ternative scripts. For example, all the fol-
lowing strings might be considered as
equivalent.

Data Base data-base data base database

data base d a t a b a s e Database.

In Arabic and other languages using the
Arabic script, there is considerable discre-
tion in how words are typed, associated
with the art of calligraphy [HALL78].

Another very different example of equiv-
alence occurs in arithmetic expressions.
The same basic calculation can be ex-
pressed in many ways by using different
orders, bracketing, and repeating argu-
ments in order to give an infinite variety of
expressions, all of which are equivalent (see,
for example, JENK76).

A very important example in keyword
searching in information retrieval [PAIc77]
is the treatment of all grammatical variants
of a word as equivalent as far as retrieval is
concerned. Normally, mechanisms here at-
tempt to reduce words to their stem or root,
and then to treat all words that can be
reduced to the same stem as equivalent.

In some interpretations [UNES76] syn-
onyms can be viewed as equivalents, but
synonyms are more properly considered as
similarities and are discussed in Section 3.1.

It is possible that some abbreviations can
be viewed as alternative spellings and thus
as equivalences--for example, LTD. for
LIMITED. In general this is not possible,
since several words may hove the same
abbreviation--for example, ST. for both
SAINT and STREET.

The idea of equivalence is well under-
stood in mathematics [BIRK70]. One can
talk of an equivalence relation "~" on the
set S of all possible strings, such that for
strings r, s, t in S

(i) s ~ s reflexivity
(ii) s ~ t ~ t ~ s symmetry

(iii) r ~ s and s ~ tffi* r ~ t
transitivity

Computing Storeys, VoW. 12, No. 4, December 1980

384 • P . A . V . Hall and G. R. Dowling

The first two properties axe obvious. It is
the third property that is important, the
property that if r is equivalent to s, and s is
equivalent to t, then r is equivalent to t.

We can now reformulate our matching
problem for equivalences.

Equivalence Problem

Given s in S, find all t in T such that s ~ t.

The equivalence relation divides the set
S of all strings into subsets $1, $2, $3
such that all strings in a subset are equiv-
alent to each other and not equivalent to
any string in any other subset. These sub-
sets are called "equivalence classes." We
can paraphrase our problem as finding all
the elements of T which are in the same
equivalence class as the search string s.

Equivalence classes can be characterized
by some typical or exemplary member of
the class. This exemplary member is fre-
quently known as the canonical form for
the class [BIRK70], and usually there are
rules for transforming any element into its
canonical form (that is, the canonical form
of its equivalence class). Since there is a
one-to-one correspondence between can-
onical forms and equivalence classes, it
gives another formulation of our problem,
to find all the elements t in T with the same
canonical form as the search string s.

2.2 Storing and Retrieving Equivalent Strings

All methods rely upon the well-established
technology of storing and retrieving exact
matches using a retrieval key, as exempli-
fied by Knuth [KNUT73] or Martin
[MART75].

To solve the equivalence problem di-
rectly, all strings are separately indexed,
and all members of an equivalence class are
linked together in some manner. Thus any
string indexes into its equivalence class, and
all equivalent strings can be retrieved. This
method can be used for alternative spellings
and for thesauri where synonyms are
treated as equivalences [UNES76]. For
symbol tables in interpreters and compilers
where alternative keywords which are not
systematic abbreviations are used (as, for
example, in PL/1), these indexes would be
predetermined and would be hand opti-

(1) Change internal z's to s's when preceded and fol-
lowed by a vowel or y.

Examples: razor, analyze, realize
Counterexamplas: hazard, squeeze

(2) Replace all internal occurrences of 'ph' by 'f ' ,

Examples: sulphur, peripheral, symphony
Counterexamples: uphill, haphazard

(3) For words of at least six letters, replace a word
ending 'our' by 'or'.

Examples: flavour, humour
Counterexample: devour

(4) After removing endings such as 'e', 'ate', and
'ation', replace the endings ' tr ' by 'ter'.

Examples: centr(e), filtr(ate)

FIGURE 1. Rules for producing a canonical form for
English and American spellings. (From PAxc77.)

mized in their design. However equiva-
lences sometimes are only obtained as part
of the acquisition of data and would be
generated dynamically, as happens with
EQUIVALENCE statements in program-
ming languages [GRXET1, TARJ.75].

The equivalence problem based on can-
onical forms is much the more common
form of the problem encountered, so we
first consider methods for reducing a string
to a canonical form. Often the transforma-
tion is trivial, involving the removal of some
extraneous characters and/or the replace-
ment of optional characters by some stan-
dard choice [SLIN79]. But in the cases of
alternative spellings and the roots of words,
the methods are more elaborate. The dif-
ferences between English and American
spelling can mostly be defined by rules
which convert words to some standard
spelling. Figure 1, taken from Paice
[PAIC77], gives a set of possible rules.

The extraction of true roots of words is
seldom attempted, but the removal of al-
ternative word endings is common. Trun-
cation is not adequate, and more elaborate
methods known as "conflation" are used.
Table 1, from Paice, gives a set of "simple"
rules; understanding the precise effect of
these is helped by the example. Rules like
these could be applied to most languages.
They will usually be incomplete in that
there will be many variants that are not
accounted for, and they will also treat as

Computing Surveys, Vol. 12, No. 4, December 1980

T A B L E 1. PAICE'S CONFLATION RULES FOR REDUC-
ING A FAMILY OF WORDS TO A COMMON R O o T ~ T H E
RULES ARE INCOMPLETE, BUT ARE CLAIMED TO BE

SATISFACTORY [PAIC77]

Label En&ng Replacement Transfer
- - a b l y - - g o t o I S
- - i b l y - - f i n i s h
- - f l y - - g o t o S S

S S - - s s - - s s f i n i s h
- - o u s - - f i n i s h
- - i e s - - y g o t o A R Y
- - s - - g o t o E
- - i e d - - y g o t o A R Y
- - e d - - g o t o A B L
- - i n g - - g o t o A B L

E - - e - - g o t o A B L
- - a l - - g o t o I O N

I O N - - i o n - - g o t o A T
-- -- finish

A R Y - - a r y - - f i n i s h
- - a b i l i t y - - g o t o I S
- - i b i l i t y - - f i n i s h
- - i t y - - g o t o I V
- - f l y - - f i n i s h
-- -- finish

A B L - - a b l - - g o t o I S
- - i b l - - f i n i s h

I V - - i v - - g o t o A T
A T - - a t - - g o t o I S
I S - - i s - - f i n i s h

- - i f i c - - f i n i s h
- - o l v - - o l u t f i n i s h
- - - - f i n i s h

equivalent words that are not equivalent.
This leads to degraded performance as
measured by precision and recall.

For example, consider the reduction of
the word "conducts" to its root "conduct."
Starting at the top of Table 1 we compare
word endings until the ending " - s " is
found. The replacement rule indicates no
replacement, so the "s" is deleted. The
transfer column indicates that we should
continue searching from the label "E." So,
starting from label "E," searching contin-
ues, matching word endings until the null
ending is reached which does match, lead-
ing to no replacement and "finish." The
root "conduct" has been found.

Having defined the canonical forms for
the equivalence classes and rules for trans-
forming arbitrary strings to their canonical
forms, these are two ways in which the
canonical form can be used.

First, the canonical form can be produced
immediately on input, so that the canonical
form is the only form that is manipulated

Approximate String Matching • 385

in the computer, being stored, used for in-
dexes, and so on. This means that the orig-
inal string as input is lost, and therefore
that strings which are retrieved will in gen-
eral be different from those which were
input. Indeed, they may be unreadable un-
less some compensating transformation is
undertaken to render them readable. This
method is invariably used in programming
languages for strings representing numeri-
cal data-- these strings are reduced to a
canonical binary form--but it is otherwise
of limited applicability. It is used for iden-
tifiers in some compilers, for example in
FORTRAN where spaces are removed, and
in some Arabic systems where the reduc-
tion to canonical form is made in the pe-
ripherals themselves [HALL78].

Second, the canonical form need only be
used where it matters, and the string as
input is stored and retrieved. The canonical
form is used whenever two strings are com-
pared. If a string item in a record is indexed,
the string is reduced to canonical form be-
fore searching the index or adding a new
entry to the index. When strings are sorted,
a sort key consisting of the canonical form
is extracted, and this sort key is used in
sorting. An example of such a use is given
in the system reported by Slinn [SLIN79].

Of course it is possible to store a string as
received and on retrieval test all stored
strings for equivalence. This is very time
consuming for large sets and underutilizes
the structure present in the problem. Be-
cause the methods of this section use stan-
dard searching technology, they are effec-
tive for large sets. As will be seen in the
next section, searching a database with a
keyword similar to the one stored is difficult
to do efficiently.

3. SIMILARITY

3.1 The Similarity Problem

By far the most usual understanding of
"approximate" or "like" is that of similarity
between two strings. By some inspection
process, two strings can be determined to
be similar or not. The important property
of similarity which makes it very different
from equivalence is that similarity is not
necessarily transitive; that is, if r is similar

Comput ing S u r v e y , VoL 12~ No. 4, December 1980

386 • P. A. V. Hall and G. R. Dowling

to s and s is similar to t, then it does not
necessarily follow that r is similar to t.

In computer-based information systems,
errors of typing and spelling constitute a
very common source of variation between
strings. These errors have been widely in-
vestigated. Shaffer and Hardwich [SHAF68]
found in typing that substitution of one
letter for another was the most common
error, followed by the omission of a letter
and then the insertion of a letter. Bourne
[BouR77] has investigated typing errors in
a number of bibliographic databases, find-
ing as many as 22.8 percent of its index
terms to be misspellings in one database
and as low as 0.4 percent in another, with
an average of 10.8 percent over all the data-
bases sampled. Litecky and Davis [LITE76]
have investigated errors in COBOL pro-
grams and found that approximately 20 per-
cent of all errors were due to misspellings
and mistypings. All investigations agree
that the most common typing mistakes
found are single character omissions and
insertions, substitutions, and the reversal of
adjacent characters. Damerau [DAME64]
has reported that over 80 percent of all
typing errors are of this type. This has been
confirmed by Morgan [MORG70]. Spelling
errors, by contrast, may be phonetic in or-
igin. In a study by Masters reported by
Alberga [ALBE67], it Was found that 65
percent of dictation errors were phoneti-
cally correct, and a further 14 percent al-
most phonetically correct. Phonetic varia-
tions are particularly common in translit-
erations, as in the example "Tchebysheff"
and "Chebyshev." Investigations of errors
vary in motivation. Bourne [BouR77] was
concerned with the quality of information
retrieval and advised better controls to re-
duce the proportion of these errors. Litecky
and Davis [LITE76] and others [JAME73,
LYON74, MORG70] have been interested in
err6i + recovery and error correction in com-
pilers. Bell [BELL76] Was interested in er-
rors as an indicator of programming com-
petence.

Optical character recognizers and other
automatic reading devices introduce similar
errors of substitutions, deletions, and inser-
tions, but not reversal. The frequency and
type of errors are characteristics of the
particular device. Pattern recognition re-

searchers seek to "correct" these errors us-
ing "context" [RISE74], either by finding
the best match among a repertoire of pos-
sible inputs (the problem considered in this
section) or by using general linguistic strnc-
ture.

Many approaches to speech recognition
deal with strings of phonemes or symbols
representing sounds, and attempt to match
a spoken utterance with a directory of
known utterances [SAKO79, WHIT76,
ERMAS0]. Variations in strings here can be
due to "noise" where one phoneme is sub-
stituted for another similar to it, or pho-
nemes are omitted or inserted, but again
not transposed. Note that phonemes vary
in their similarity to each other, which, for
example, makes it more likely that a "d"
sound will be misheard as a "t" sound
rather than as an "m" or "f" sound
[N~.wE73, POTT66]. Another source of vari-
ation in phoneme strings is the duration of
the spoken word. While words and phrases
can be spoken at various speeds, speech to
phoneme transducers often work at fixed
time intervals, and thus slow speakers pro-
duce longer sequences of the same or simi-
lar phonemes [VELI70].

Synonyms constitute a very different
source of variations. In all languages there
are many words which mean more or less
the same things. If we consider the follow-
ing example taken from Roget's thesaurus
[RoG~.61]:

GUN RIFLE CANNON
REVOLVER

we might be tempted to think of synonyms
as equivalences, but if we look at the ex-
ample

HOT WARM COOL COLD

we see that synonymity is not transitive;
HOT is not synonymous with COLD. How-
ever, when synonyms are controlled by a
thesaurus, they are often treated as equiv-
alent (see for example the SPINES thesau-
rus [UNES76]), often referring to the var-
ious alternative words as denoting a partic-
ular "concept." Thesauri and synonyms are
discussed in most books on information re-
trieval [SALT68, PAIC77].

A problematic example is abbreviations,
especially when used in names. Note that

Computing Surveys, Vol. 12, No. 4, December 1980

this has the flavor of a similarity relation-
ship, not an equivalence one. For example,
"P." might be an abbreviation for both
"PATRICK" and "PETER," but Patrick
and Peter are certainly not equivalent! A
survey of methods for systematically gen-
erating abbreviations while retaining dis-
crimination ability has been given by
Bourne and Ford [BouR61]. Although a full
treatment of the handling of abbreviations
is beyond the scope of this paper, we sug-
gest that an abbreviation denotes a set of
strings and thus denotes partial knowledge
about the actual string intended. The par-
tial knowledge problem is very close to the
problem we are studying here, and the re-
cent pioneering paper by Lipski [LIPs79] is
highly recommended.

In all these examples we have been hy-
pothesizing some mechanism for testing
whether two strings are similar to each
other. Analogous to an equivalence rela-
tion, we can define a similarity relation "~"
on the set S, such that for r, s, and t in S

(i) s ~ s reflexivity,
(ii) s ~ t ~ t ~ s symmetry,

but

(iii) r ~ s and s ~ t ~b r ~ t
not necessarily

transitive.

Our problem now becomes

Similarity Problem

Given s in S, find all t in T such that s ~ t.

Now in most examples there is some idea
of degree of similarity. There can be one or
many typing mistakes; a spelling mistake
can be almost right or completely wrong;
two spoken utterances can sound very sim-
ilar or completely different; and even syn-
onyms can have degrees of similarity. Thus
we can postulate a similarity function

a : S × S---~ R

which for a pair of strings s and t produces
a real number a(s, t). This similarity is
usually taken to have a value +1.0 for iden-
tical objects, and ranges down to 0.0 (or
sometimes -1.0) for very different objects.
Thus we could solve the similarity problem

Approx imate S tr ing Ma tch ing • 387

by finding all strings t~such that a($, t) is
greater than some threshold of acceptabil-
ity, or we could find the N strings, t~, t2,
. . . . tN such that their a(s, t j have the N
largest values.

Similarity functions in this form were
favored by Alberga [ALBP.67] and are very
popular in information retrieval [SALT68,
PAIC77] and in classification and clustering
[CORM71]. The value of +1.0 for an exact
match seems to have strong intuitive ap-
peal, and the range of values from -1.0 to
+1.0 appears to gain respectability from
correlation coefficients and normalized in-
ner products [RAHM68]. For example, Sal-
ton gives a similarity function

min(v, v,
= i

for the property vectors v and w of two
terms. It has the range [0.0, +1.0].

To begin with, we use a difference func-
tion

d : S × S - * R

with properties

(i) d(s , t) - 0
(ii) d(s, t) = 0 if and only if s = t

(iii) d(s , t) = d (t , s)
(iv) d(s, t) + d(t , r) ~_ d(s , r)

triangular inequality.

It is this triangular inequality which is use-
ful, as seen in Section 3.3. When a difference
function satisfies all these properties, we
say it is a metric [BIRK70]. Thus by using
a difference function, we could formulate
our problem as finding all the strings t in T
which are closer to the search string s than
some threshold ~. Alternatively, we could
find the N strings t which are closest to s,
that is, for which d(s, t) is smallest.

Most string matching problems will of
course involve both equivalence and simi-
larity. That is, there is both an equivalence
relation on the set of strings, which groups
them into equivalence classes, and a simi-
larity function or difference function be-
tween strings. Misspellings and mistypings
of natural language are of a combined kind.
There is an optional variation which is un-
important, for example, the use of spaces
for formatting and (perhaps) uppercase let-
ters; and there is variation which must be

Computing Sm'veys, V~fl. I~, No. 4, December 1980

......... = : ~ ~ ~ ~ : ~

388 • P. A. V. Hall and G. R. Dowling

classed as error. With this hybrid problem,
the similarity must be taken between equiv-
alence classes. Where the similarity func-
tion or difference function is between
strings, then it should be between canonical
forms; this could influence the choice of
canonical form.

3.2 Measures of Similarity

How do we assess whether two strings are
similar to each other? How do we quantify
this similarity or difference?

A very early method for assessing simi-
larity is the Soundex system of Odell and
Russell [ODEL18], which reduces all strings
to a "Soundex code" of one letter and three
digits, declaring as similar all those with
the same code. However, the relationship
of having the same code is an equivalence
relation, but the string matching problem
this proposes to solve is a similarity prob-
lem. Not suprisingly, the Soundex method
and other methods like it can sometimes go
very wrong. Yet these approaches can pro-
vide significant extra flexibility to systems
that use them. The application of the Soun-
dex method in a hospital patient index was
recently reported [BRYA76], and a related
method has been used successfully in airline
reservations [DAvI62].

Let us examine the Soundex method and
its shortcomings. The idea is to transform
the name into a Soundex code of four char-
acters in such a way that like-sounding
names end up as the same four characters.
The first character is the first letter of the
name. Thereafter numbers are assigned to
the letters as follows:

0 A E I O U H W Y 1 B F P V
2 C G J K Q S X Z 3 D T
4 L 5 M N
6 R

Zeros are removed, then runs of the same
digit are reduced to a single digit, and fi-
nally the code is truncated to one letter
followed by three digits. Note that while
DICKSON and DIXON are assigned the
same code of D25, RODGERS and
ROGERS are not assigned the same code.
And what of like-sounding names HODG-
SON and DODGSON?

Related approaches have been taken by

Blair [BLM60] and Davidson [DAvI62].
Both defined rules for reducing a word to a
four.letter abbreviation. Davidson, whose
application was airline reservations, then
appended to the abbreviation of the family
name, the letter of the first name. So far
these methods are very similar to the Soun-
dex method, but they go further and intro-
duce aspects of similarity. Blair did not
allow multiple matches, and if they oc-
curred, used longer abbreviations to resolve
the ambiguity. He thus found the best
match, provided that it was close enough.
Davidson, by contrast, allowed multiple
matches but insisted on finding at least one
match by approximately matching the ab-
breviations looking for the longest subse-
quences of characters in common.

3.2.1 The Damerau-Levenshtein Metric

Damerau [DAME64] tackled the problem of
misspellings directly, concentrating on the
most common errors--namely, single omis-
sions, insertions, substitutions, and rever-
sals. He used a special routine for checking
to see if the two given strings differed in
these respects. This work stands out as an
excellent early work: the author has ana-
lyzed the problem clearly, and made his
solution fit the problem. Damerau's algo.
rithm has since been used by Morgan
[MORG70].

Damerau had only considered strings in
which a single change had occurred. The
idea can be extended to consider a sequence
of changes of substitutions, deletions, inser-
tions, and possibly reversals. By using se-
quences of such operations any string can
be transformed into any other string. We
can take the smallest number of operations
required to change one string into another
as the measure of the difference between
them. Given two arbitrary strings, how do
we find this difference measure?

Once the problem has been formulated
as an optimization problem, standard opti-
mization techniques can be applied. In 1974
Wagner and Fischer [WAGN74a] published
a dynamic programming method. To moti-
vate this method, consider the example of
ROGERS and HODGE. Assume that
somehow you have found the best matches
for all the substrings ROGER and HODG

Computing Surveys, Vol. 12, No. 4, December 1980

Approx imate S t r ing M a t c h i n g • 389

(with difference 4), ROGER and HODGE
(with difference 3), and ROGERS and
HODG (with difference 5), and you are H
about to consider the best match for
ROGERS and HODGE. If the last two
characters are to be matched, then the]
score will be 5, 4 from the ROGER/HODG
match and 1 for the mismatch of S and E. /
If the S will be unmatched at the end of
ROGERS and treated as an insertion/omis- /
sion, then the score will be 4, 3 from the
ROGER/HODGE match and again 1 from I
the insertion/omission. If the E at the end
of HODGE is treated as an insertion/omis- E
sion then the score will be 6. Thus the best
match of ROGERS and HODGE is 4, the
smallest of these three alternatives.

Generalizing the idea of this example
leads to the dynamic programming method.
A function f(i , j) is calculated iteratively
using the recurrence relations below: f(i , j)
is the string difference for the best match
of substrings s~s2s3 . . . s, and t~t2t3 . . . t~.

f(0, 0) ffi 0

f (i , j) = m i n [f (i - 1, j) + 1,
f (i , j - 1) + 1,
f (i - 1 , j - 1) + d(s , , 6)]

d(s,, t~)ffiO if s , = 6

= I otherwise.

where

Here we assume insertion, omission, and
substitution are each assessed a "penalty"
of 1. This method can be represented as a
problem of finding the shortest path in a
graph, as is shown in the example of Figure
2. It does not, however, take into account
reversals of adjacent characters.

This basic method can be extended in
several directions, Lowrance and Wagner
[LowR75] have given an extension to allow
general reversals of order. Transposition of
adjacent characters is a special case, and
the recurrence relation above is quite easily
extended to cope with this, by adding to
the minimization the term

f (i - 2 , j - 2) + d(s,-, , 6) + d(s,, t~_,),

which allows for the transposed neighbors
that do not match exactly. It is clearly also

M I L L E R
(0, (2) ----~ (0,1) ----~(0,2) - - -~ (0,3) - . ~ (~ 0 - - -) ' {0,5) ---') ' (0,6)

o ~ ~ \ 2 \ 3 \ ",,. s \

(1 ,0) .~ . (1,.~) - - -~ (1,2)--.--~(1,3)----~(1,4)--~ (1,5)---.~(1,6)

(3,q).....~(3,1)..-~(3,2)..~m.(3,t)-....~(3,41-...~(3 ;1...--.~ (3,61
3.\ ~.\ ? \ 1-% 2 \ \

(4,0)..--~(4,1)....~(, 2).--.~(4,3)...~(4e4)...~(4 i)--...~(4,6)
4 \ 4 \ \ 2\ x \ \ 3.

1 o --1 " 1 l l

/ 1 / 1 ~1 /~'1 /~'0 \1 l
(6,0)..~-b.(6,-1)-....~((2)---.),(5,.3).--..>.(6,4).~...),(6 ;)---.),(6,6)

6 ~ 6 ~ ~ 4N 3 N ~ 3

(a)

best match
114 I L L E . . - / - / / ,

(b)

FIGURE 2. (a) Example of the comparison of two
strings. The two strings are shown along the top and
down the side. Each node of the graph is labeled,
(i, j) as appropriate, and below the label is shown
the value of f(i, j) for tha t node. The weights along
the diagonal edges are the d(s~, 6) values, and along
the horizontal and vertical edges they are the pen.
alty values, here set to 1. (b) The best match occurs
with a difference of 2, the value of f(7, 6), and the
manner of this best match can be deduced from the
shortest path, which is drawn in heavy lines.

possible to allow multiple character
matches, for example CKS and X, but no
work known to us makes this extension.
Such an extension would be very necessary
for comparisons of transliterations, where
multiple characters in one language fire.
quently represent one sound or letter in
another language.

Another direction of generalization is to
allow for substitutions and even insertions
and deletions to have different weights, as
a function of the character or characters
concerned. Thus, for example, d(i, y) could
be small while d(i, f) could be large. No
table of letter similarities has been pub-

Computing Surveys, Vol~ 12, No. 4, December 1980

390 • P. A. V. Hall and Go R. Dowling

lished as far as is known, but a table of
phoneme similarities was given by Newell
et al. [NEWE73]. Instead of modeling pho-
netic similarities, the difference function
could model miskeying by taking into ac-
count adjacency on the keyboard--for ex-
ample, an "a" is often mistyped as an "s."

This distance function and its dynamic
programming solution were in fact devel-
oped much earlier in the Soviet Union
within the fields of coding theory [LEVE66]
and speech recognition [VINT68, VELI70].

The primary objective in speech recog-
nition is to compensate for different speeds
of speaking and thus stretch or compress
the string of phonemes in order to find a
best match. This is often called "elastic
matching" [DOwL77, SAKO79, WHIT76]. In
addition to having the difference between
phonemes variable, a penalty can also be
introduced for "off-diagonal" matching, to
encourage linear matching but still allow
elastic matching [ALBE67].

The string difference of Wagner and
Fischer satisfies the triangular inequality
and thus is a metric. The definition of the
difference as the minimum number of
changes required to convert one string into
the other establishes the triangular ine-
quality. All the variations discussed above
also form metrics, although it is important
that when nonequal character differences
are used, these character differences them-
selves form a metric. We refer to all dis-
tance functions in this general class as
Damerau-Levenshtein metrics, after the
two pioneering authors in the field
[DAME64, LEVE66].

The dynamic programming method takes
on the order of n ~ operations to produce its
best match where n is the length of the
strings being matched. Wong and Chandra
[WONG76] have analyzed this in detail,
showing that it is the best possible unless
special operations are used. As seen below,
methods can be derived which are faster in
some cases, but these use special methods.
The order n 2 processing time is not unduly
prohibitive, and one of the authors has used
the method in near-real-time speech rec-
ognition [DowL77]. The Damerau algo-
rithm [DAME64, MORO70], which checks
just for single errors, is of order n.

One of the by-products of finding the best

match between two strings by the Wagner
and Fischer method is that it also yields
the longest common subsequence. We could
also work in the opposite direction: find the
longest common subsequence first and then
from this compute the difference. A number
of techniques other than the dynamic pro-
gramming method have been published
[HUNT77]. These methods have best cases
with better than n 2 complexity. Aho,
Hirschberg, and Ullman [AHo76] have de-
rived complexity bounds for the longest
common subsequence problem and have
shown that alphabet size is important. For
finite alphabets (as in our problem) an im-
provement on the n 2 limit should be possi-
ble. Heckel [HECK78] has given a method
for comparing files which is similar to the
methods based on longest common subse-
quences, but highlights subsequences which
have been moved as a body. In some appli-
cations, particularly fde comparisons, this
may be thought to model the real differ-
ences and similarities between the two
strings more closely.

3.2.2 Similarity as Probablfity

Another approach to string matching and
similarity is through probabilities and like-
lihoods. This approach has been taken by
Fu for error-correcting syntax analysis
[Fu76]. He follows the conventions of com-
munications theory using conditional prob-
abilities [BACO73, PETE61] to model the
production of errors, but there are problems
with this approach. We present an alter-
native formulation.

Let us investigate the joint event (s and
t) that string t is "correct" while string s is
the observed string. We compute the prob-
ability of this event P (s and t). To do this,
let us imagine a generation process which
jointly produces s and t from left to right.
After this process has created the first i
characters of s and the first j characters of
t, we can postulate the generation of the
next character of s or t or both, with the
possible events being (where e is the empty
string)

{x and e) ffi the next character of s is x,
and no character of t is gen-
erated;

Computing Surveys, Vol. 12, No. 4, December 1980

{e and y} = no character of s is gener-
ated, and the next charac-
ter of t is y;

(x and y} = the next character of s is x,
and the next character of t
is y.

These events exhaust the possibilities, and
thus

~ P (x a n d y } - - i
x y

where we sum over the alphabet including
the possibility that x or y is the empty
symbol e. Notice that in this generation
model we have avoided cause and effect as
embodied in conditional probabilities, be-
cause of the difficulty of postulating a cause
for inserted characters.

With this model of the joint generation
of s and t, we can compute a probability for
any matching of s and t as the product of
the probabilities of the individual generat-
ing events. We can compute the best match
as the most probable (most likely) match-
ing using our dynamic programming algo-
rithm, recasting the recurrence relations as

q (0, O) = 1

q(i , j) ffi m a x [q (/ - 1 , j)P{s , and e}
q (i , j - 1)P(e and ty},
q(i - 1, j - 1)P{s, and tj}].

Note that it is the most probable matching
that we are finding, so q(n, m) is not P { s
and t} but P {s and t and M} where M is
the best match between s and t. If we take
logarithms of these recurrence relations
and suitably adjust signs, setting

f = --log q,

D ffi - log P {x and e}

= - log P {e and y},

d (x, y) = - log P (x and y},

we obtain the earlier recurrence relations
for differences. However, now the weights,
the logarithms of the probabilities, must
satisfy certain constraints.

To find P {s and t}, we must sum over all
possible matchings. This can be done iter-
atively by computing the function

Approximate Str ing Matching • 391

Q(O, O) ffi 1,

Q(i , j) ffi Q(i - 1,j)P{s~ and e}

+ Q (i , j - 1)P{e and tj}

+ Q (i - 1 , j - 1)P{s, and tj},

P { s and t} ffi Q(n, m).

The similarity to the earlier dynamic pro-
gramming recurrences is remarkable, al-
though this computation has nothing to do
with dynamic programming. To choose the
best matching string t, we simply choose
the t such that P{s and t} is largest. P{s
and t} is a true similarity function, satisfy-
ing the property

0 ~ P {s and t} _ 1,

and generally being close to zero.
In this model the various P {x and y} can

be estimated experimentally by observing
errors. Such observations have been made
for phonemes [NEwly73] but not for keying
errors, and thus there is a need for studies
in this area. The model is very appealing
but is open to objections because the gen-
eration process could generate any pair of
strings (unless some of the P {x and y} are
zero), and in real applications the set T is
a comparatively small subset of S. However
this case can be modeled using regular
grammars, and methods for these are sur-
veyed in Section 4.

3.3 Storing and Retrieving Similar Strings

Our problem is to find approximate
matches for a given searoh string s within
a set T of strings which are stored explicitly.
We must be able to retrieve a record asso-
ciated with these approximate matching
strings and extract associated information.

The primary consideration is the size of
the set to be searched. If the set is very
small, then all the strings in the set can be
tested in turn to see if they satisfy the
search criterion (within a threshold ~, or
one of the closest N). Often the set is large,
perhaps containing millions of entries, and
then something must be done to avoid ex-
haustive searches.

A secondary consideration is the relative
importance of the approximate matching
necessary. Suppose the problem requires

Computing Surveys, Vol. 12, No. 4, December 1980

392 o P. A. V. H a l l a n d G. R. Dowl ing

an exact match if one exists, and otherwise
a best match. If exact matches are common,
then it could be that the primary require-
ment is that exact matches be quick to find,
while finding approximate matches need
not be that efficient. In many applications
we can expect 80 percent or more success
for exact matches, following the figures of
Bourne [Botm77] and Litecky and Davis
[L]TE76]. However, in other applications,
such as speech recognition, exact matches
are most unlikely, and all storage should be
structured for approximate matching.

In his review Alberga [ALBE67] made no
mention of these search considerations, but
three years later Morgan [MoRG70] gave a
sound discussion of these issues. Morgan's
application was searching symbol tables, so
he did not consider the extremely large sets
that could be encountered in information
systems.

There are two basic approaches to
searching large sets for approximate
matches. The first is to structure the stor-
age of the set T for efficient exact matching,
and then when looking for a near match to
generate all the strings similar to the search
string and test whether these are in the set.
The second approach is to structure the
storage of the set T with approximate
matching in mind using a partitioning strat-
egy. First we look at exhaustive serial
searches in order to establish some basis
upon which to judge other methods.

3.3. 1 Serial Searches

Let us examine simple serial searches and
obtain preliminary quantitative figures. We
are going to compare and contrast methods
by estimating the number of disk accesses
required, using a very naive analysis.

Let I T I be the number of strings that are
stored, and let m be the (average) number
of strings retrieved per disk access. Then a
simple serial scan of the set T requires

ITI
Q1 -- disk accesses.

m

For example, if we take I T I ffi 2,000,000 and
strings have an average length of 10 bytes
and are stored on disk pages of 2K bytes,
then m ffi 200 and Q1 -- 10,000. These ex-
ample figures are used again in later com-
parisons.

3.3.2 Generating Alternatives

Given a search string s, we can start by
testing to see if s itself is in T and an exact
match is possible. If this fails, then we can
look for a member or members of T close
to s by generating all the elements of S in
the neighborhood of s and testing each of
these in turn to see if it is in T.

The elements of T need to be stored so
that searching for an exact match is fast.
The technology of exact matching is highly
developed [KNUT73, MART75]. Thus test-
ing for membership of T is easy, and can be
coupled with the retrieval of the associated
record. Suppose we use B-trees for our in-
dexing [COME79]; following KNUT73 (page
476) there will be approximately

ITI+I
1 + logrm/21 2

disk accesses per index probe, that is, per
member of the neighborhood being tested.
This is approximately four disk accesses for
I T I = 2,000,000 and m = 200.

Now if the alternatives to be tested con-
sist only of a few synonyms, then the neigh-
borhood is small, and this method would be
very effective. A more common require-
ment is the correction of misspellings or
mistypings involving insertions, deletions,
substitutions, and reversals, as discussed in
Section 3.2. The members of the neighbor-
hood could be generated, but the neighbor-
hood is now large. A systematic method for
generating all the members of the neigh-
borhood needs to be constructed. Riseman
and associates [R]s~.74] have produced
such an algorithm, though no details are
known. The algorithm would be worth pub-
lishing because the generation of the neigh-
borhoods is a nontrivial combinatorial
problem.

These neighborhoods are very large.
Consider a string s of length n with symbols
drawn from an alphabet A of size k. Allow-
ing for insertions, deletions, substitutions,
and reversals of adjacent characters, we
find the size of the neighborhood of strings
with difference 1 from s is

N(n , 1) ~ (n + 1)k + n
+ n(k - 1) + (n - 1)

= k(2n + 1) + n - 1.

Computing Surveys, Vol. 12, No. 4, December 1980

Equality holds provided no two adjacent
characters are the same. The size of the
neighborhood of distance 2 from s is

N(n, 2) = N(n, 1) 2.

If we consider testing all strings differing
by only one error from a string of length 10,
with a 26-letter alphabet, the neighborhood
size is 565. If we have to use our index and
access a disk page for each of these, we then
require four disk accesses per string, or a
total of

Q2 ffi 2260 disk accesses

which is about 4.5 times better than the
exhaustive search case. However, to test for
up to two errors, we find that

Q2 = I million,

which is disastrous.
So, at first assessment, the idea of gen-

erating all the strings in the neighborhood
seems worthless. But suppose we had some
simple test which could be used to eliminate
most of the members of the neighborhood
before accessing the disk to look for the
strings in T. All we need is a test for mem-
bership of some set X which covers T.

The only published test known to us is
that of Riseman and Hanson [RISE74] and
Ullman [ULLM77] discussed below. Their
approach is ad hoc, but clearly some idea
of well-structured strings for English (say)
could be derived, since some combinations
of letters simply do not occur in English.
Any structural test derived from the words
or phrases involved would suffice. Struc-
tural tests in the form of grammars would
provide a very convenient method [GRIE71,
HoPc66]. It has been claimed that over 40
percent of possible consecutive letter pairs
do not occur in English (Sitar, quoted in
RISE74), which suggests that a sensitive
test should be possible. Riseman and Han-
son review a number of structural tests
which are not based on grammars but on
checking for the occurrence of sequences of
letters within a word or the occurrence of
particular letters at particular positions in
the words. Their best test can detect simple
errors with approximately 99 percent ac-
curacy, but this is only on small vocabular-
ies and is expensive in storage. While Rise-
man's methods, and those derived from him

Approximate String Matching • 393

[ULLM77], may not be ideal for the large
sets of strings that concern us here, they do
indicate what should be possible. A quick
test should at least be able to reduce by an
order of magnitude the number of disk ac-
cesses required and thus make matching to
within a single error by generating alter-
natives a viable method.

3.3.3 Set Partitioning and Cluster Hierarchies

In the section on exhaustive serial searches,
the critical factor was the size of the set T.
If we could partition T into subsets T1, T2,
. . . . and select only a few of these subsets
for exhaustive searching, we should be able
to reduce our number of disk accesses con-
siderably.

Morgan [MORG70] and Szanzer [SZAN69]
have suggested partitioning by string
length. Assuming that we are only looking
for strings differing by only one error, then
we need only search strings differing from
the length of the search string by 1. This
idea will not have a very significant impact
but may improve the search cost two- to
fivefold. This is because strings in applica-
tions, such as name indexes, do not vary
much in length and have a very nonuniform
distribution in length.

Another idea would be to partition the
set on the first letter. There may be no
attempt made to compensate for errors
in the initial letter, for example, Muth and
Tharp [MUTH77]; Or the errors in the first
letter may be searched for in some separate
operation, as proposed by Szanzer
[SZAS73].

Ideally any partitioning strategy should
produce sets of the same size, and the
search efficiency is sensitive to departures
from a uniform distribution. The average
number of disk accesses for exact matching,
assuming each stored string is equally
likely, is given by

/ Number of disk * Probability of 1
Q3 = ~ I accesses to search string /

T \search T~ being in Ti /

zIT, I I T , I
, m I T I

_ v ! _ T ±
," ml Tl"

Computing Surveys, VoL 12, No. 4, December 1980

394 • P . A . V . Hall and G. R. Dowling

If we use some simple rule based on string
length or leading letters, we inevitably
come up against the uneven distribution of
real data. Moreover, the use of data is very
uneven. Knuth [KNuT73, pp. 396-398] has
a stimulating discussion of this; a useful
rule for us here is the 80-20 law, that 80
percent of the activity appears in 20 percent
of the file.

Morgan [MORG70] also suggested a tech-
nique for partitioning the set based on the
first two letters

Txy ffi {t in T such that t begins XY}.

For the usual 26-1etter alphabet, this gives
676 subsets. Of course, following our earlier
remarks that 40 percent of pairs do not
occur, many of these subsets will be empty.
When searching for a string beginning PQ,
for example, we would only need to search
the 77 subsets where at least one of the
defining letters was a P or a Q (that is,
subset PQ for an exact match on the first
two letters, P? for substitution or deletion
of Q or a reversal of the second and third
letters, ?Q for substitution of P, QP for
reversal of PQ, and Q? for deletion of P).
Making the most favorable uniformity as-
sumptions, this means at most a ninefold
speedup. Extending the idea to the first
three letters, we can hope for as much as a
200-fold speedup on single errors, but the
number of partitions is beginning to get out
of hand. We could do some hashing how-
ever, to randomize and superimpose subsets
as Morgan suggested.

So far these methods have not appeared
very effective. Though the exact search be-
havior is not known, they appear to have a
search time proportional to I TI, since the
partitioning strategy is fixed and indepen-
dent of I T I- What we would like ideally is
a search behavior of order log I T I, as is
found for exact matches.

An interesting search method has been
suggested by Shapiro [SHAP77] in the con-
text of general pattern recognition. The
method consists of imposing a linear order-
ing on all the elements of the set of patterns
to be searched, finding a most likely match
by using binary searching to find a candi-
date match, and then searching in that
neighborhood for a best match. The linear
ordering is determined by the difference

from some reference point, and it is this
difference which gives the means for com-
puting bounds that keeps the search to the
neighborhood of the first candidate match.
Because the string difference metric does
not provide fine discrimination, the method
is unlikely to work well for strings.

Knuth [K~uT73] has suggested a method
based on the observation that strings dif-
fering by a single error must match exactly
in either the first or the second half. He
does no more than hint at a method of
exploiting this observation, but one method
might be the following. Index the set using
both the first and last halves-- the first and
last In/2] - 1 characters--so that the cen-
tral two characters are omitted from an
even-length string to allow for central re-
versals. For retrieval try the first and last
halves, both the [n/2J and the [n/2J - 1
first or last characters, so as to allow for
insertions and deletions. Thus we retrieve
two sets of strings which must be serially
searched to find any actual matches to
within a single error. (Notation: [xJ is the
greatest integer less than or equal to x, and
[y] is the smallest integer greater than or
equal to y.) This method will be sensitive
to the actual distribution of the strings but
does seem very promising. No theoretical
or empirical results concerning its effective-
ness are known.

Log] T I search behavior is obtained in
tree-structured searches. Muth and Tharp's
method [MUTH77] forms a character tree,
but since they then backtrack up the tree
on encountering an error, much of the ad-
vantage of the tree is lost. The only sub-
stantive gain they do get is by partitioning
on the first character, but they do not at-
tempt to correct errors in that first char-
acter place.

A general tree-structured approach has
been suggested by Salton and his associates
for use in information retrieval [SALT68,
SALT78]. The method uses the similarity
distance function as its basis for partition-
ing, dividing the set into "clusters" of
strings which are simlar to one another.
That is, strings within the same subset Ti
have d(s, t) small, and strings in different
subsets have d(s, t) large. The automatic
formation of subsets with these character-
istics is known variously as clustering or

Computing Surveys, Vol. 12, No. 4, December 1980

FIGURE 3. A hierarchy of clusters, with TI, T2, and
T3 contained in T6, T4 and Ts contained in Tv, and
T6 and T7 contained in Ts, the whole of T.

classification (see, for example, the review
by Cormack [CORM71]). This method
shows promise of approaching the log[T[
goal and is described in some detail.

A hierarchy of clusters is formed, and
each cluster T, is described by a center c~
and a radius r,:

T, ffi (t : d (t , c,) <~ r, and t in T}.

Clusters at higher levels contain clusters
below them, and clusters at a particular
level could overlap. Figure 3 illustrates this.

To search for all the strings within ~ of
the search string s, we start at the highest
level and search within a cluster T,(c,, r,) if
and only i f d (s , c,) ~ r~ + ~. This guarantees
finding al l t in T with d(s , t) <- ~, provided
that the difference function satisfies the
triangular inequality.

To search for the best match (or N best
matches), we use what is basically a branch-
and-bound technique [HALL71]. For any
subset T,(c,, r,) we have the bounds

d(c, , s) - r, <~ d(s , t) <~ d(c, , s) + r,

for all t in T; this follows from the triangular
inequality. We search in the most promising
subset (the one with the minimum value of
d(c~, s) - r,) to find the best candidate
match t* and then search in the next best
remaining subset provided that it could

A p p r o x i m a t e S t r i n g M a t c h i n g • 395

possibly yield an improvement, that is, pro-
vided that d(c, , s) - ri ~ d (s , t*). Thus
successively better matches t* are found
until it is evident that no further searching
is necessary. Both variations of the search
use the triangular inequality to guarantee
the search algorithms.

Alternatively, the decisions to stop
searching can be based upon empirically
determined parameters, which is the ap-
proach taken by Salton.

Let us illustrate the search process with
a small string searching example. Figure 4
shows the differences for a set of 15 names,
while Figure 5 shows the set divided into
five clusters, including one miscellaneous
cluster to accommodate the two strings
which did not happily fit into any other
cluster. Figure 6 then shows two searches
for all matches within a given tolerance.
Figure 7 shows a search for a best match.
Note that the miscellaneous set is always
searched.

It is necessary to define insertion and
deletion strategies, as well as the search
strategy. Salton and Wong describe an in-
sertion method which they claim provides
a good basic clustering method, but they do
not describe a deletion method. They liken
their approach, quite correctly, to B-trees
[KNUT73, COME79] without pursuing the
analogy.

Assuming a balanced tree, or reasonably
uniform tree, the average depth of the tree
will be of order log[T{. But the search
methods reported above do not only search
a single path from root to leaf, they also try
other branches if these are found to be
necessary. These other paths could com-
pletely destroy the potential log] TI behav-
ior, and in the worst case lead to an ex-
haustive search. Salton and Wong suggest
limiting the extra searching at each level in
the hierarchy to some small number of
branches p. Suppose that the tree branches
k ways at each level, and at each level we
search p of these branches. Clearly p is less
than k. We must search p branches at each
of the 1ogk{ T[levels in the tree, and thus
must search

plog, ITI _____ [T{log,p

strings at the lowest level. If, for example,
p ffi ~/k, then logkp ffi ½, and we must s e a r c h

Computing Surveys. Vol. 12, No. 4, December 1980

3 9 6 • P. A. V. Hall and G. R. Dowling

JOHNSON
ALWOOD
FENLON

BUBENKO
ROGERS
SENKO

ROGET
GOODWIN
WOODRUM
HINTON
HODGES
SLOANE
RODGERS
DODGSON
GOODRUM

J A F B R S R G W H H S R D G
0 L E U O E O O O I O L O O O
H W N B G N G 0 O N D O D D O
N 0 L E E K E D D T G A G G D
S O O N R O T W R O E N E S R
O D N K S I U N S E R O U
N O N M S N M

- 6 4 6 6 5 6 5 6 4 6 7 6 3 6
6 - 5 7 6 5 6 6 5 5 6 5 7 6 6
4 5 - 5 6 3 6 6 7 3 6 6 7 5 7

l
6 7 5 6 3 6 7 7 6 7 6 7 7 7
6 6 6 6 - 5 2 6 5' 6 3 6 1 5 5
5 5 3 3 5 - 5 7 7 4 6 5 7 6 7

6 6 6 6 2 5 - 6 6 6 3 5 3 5 6
5 6 6 7 6 7 6 - 4 6 5 6 6 6 3
6 5 7 7 5 7 6 4 7 5 6 6 6 1
4 5 3 6 6 4 6 6 7 - 5 6 7 5 7
6 6 6 7 3 6 3 5 5 5 - 5 2 4 5
7 5 6 6 6 5 5 6 6 6 5 6 7 6
6 7 7 7 1 7 3 6 6 7 2 6 - 4 6
3 6 5 7 5 6 5 6 6 5 4 7 4 6
6 6 7 7 5 7 6 3 1 7 5 6 6 6 -

FIGURE 4. Difference matrix for a set of 15 names. The differences shown are the best match differences,
which have been found using the simple dynamic programming approach.

Cluster Center c,, Radius r, Members

TI GOODRUM, 3 WOODRUM, GOODRUM, GOODWIN
T~ RODGERS, 3 ROGERS, RODGERS, ROGET, HODGES
Ta SENKO, 4 FENLON, HINTON, SENKO, BUBENKO
T4 JOHNSON, 3 JOHNSON, DODGSON
T5 MISCELLANEOUS ALLWOOD, SLOANE

FIGURE 5. Clusters formed from the names of Figure 4.

J I T I strings. While we do not have a logl T I
law, we have certainly done bet ter than a
linear search.

Consider our example where IT[•ffi
2,000,000. Suppose our index branches 100
ways at each level, and the index is ar-
ranged with the specification that all 100
ways stored are on one disk page, as in B-
trees. Suppose further tha t we only search
at most ten branches at any level. T h e n our
law above says we must search some 1400
strings, or seven pages at 200 strings per
page. Including the index, this requires
around ten disk accesses in total.

This approach will only be good if the
clustering is good and ensures tha t only a
few of the branches need searching. And
this clustering must be preserved under
insertion and deletion. There is a real need

for some research here to determine what
clustering proper ty is necessary to ensure a
good search behavior, and what insertion
and deletion algorithms will guarantee
preservation of this property.

At the momen t too little is known about
this cluster hierarchy method for the use of
it to be anything bet ter than a gamble. But
if somebody did gamble and validate the
method empirically, tha t would be worth
reporting.

4. ERROR CORRECTION USING
SYNTACTIC STRUCTURE

Instead of the set of strings being stored
explicitly, as has been assumed up to this
point, the set could be defined by a collec-
t ion of s tructural rules such as a grammar.

Computing Surveys, Vol. 12, No 4, December 1980

Search I Search 2

Search string s G O O D G E FENKON

1 Tolerance

Distance of T~
search string T2
from center T8
of cluster T4

Clusters requiring
further searching

4 7
6 2
6 4

T~,T2
T~

Ts, T,
T~

Strings found None FENLON
SENKO

FIGURE 6. Two searches of the cluster hierarchy of
Figure 5.

If a string fails to conform to the rules, it is
in "error ." By suitable use of the rules, the
error can be "corrected" and the string
identified.

Riseman and Hanson [RisE74] describe
a set of rules based upon the occurrence or
nonoccurrence of part icular sequences of
letters. T h e sequences can be ei ther adja-
cent let ters occurring a t any point in the

Approximate String Matching • 397

string or they can be let ters occurring at
fixed points in the string. T h e application
is error correct ion following optical char-
acter recognition. Riseman and Hanson ac-
quire their rules direct ly f rom the set of
strings tha t are permit ted. F ro m the partic-
ular rules tha t are violated, they deduce a
correct ion which when applied will make
the string conform to the rules. However a
proport ion of the strings in er ror (as high
as 30 percent) are "uncorrectable" because
no correct ion can be readily deduced f rom
the violated rules.

All o ther methods of s t ructural error cor-
rect ion are based upon a grammar. Follow-
ing Hopcrof t and Ullman, we use the no-
tat ion G ffi (Vs, VT, P, S) for a grammar,
where VN are the nonterminals, VT are the
terminals, P the productions, and S the
s tar t symbol in V~ [HoPc69]. In error-cor-
recting parsing, instead of rejecting a string
found to be in er ror during parsing, the
string is corrected to tha t m em b er of L(G),
the language generated by the grammar G,
which is closest to the given string.

A halfway stage to full error correction is

HOODGUS
(a)

Cluster

T~
T2
T3
T4

d(s, cj d(s, c,) - 8,

(b)

Step Search Strings found

Ts
T~
T2
T4

SLOANE
GOODRUM WOODRUM
HODGES
Know that we cannot find
a closer match, but could
find an equal match.
Continue only if all best
matches required, then
STOP.

Differences

{c)

HODGES, difference 2.
(d)

FIGURE 7. Finding a best matching string: (a) search string; (h) results of
comparisons with cluster centers; (c) steps in search for the closest match; (d)
result.

Computing Surveys, Vol. 12, No. 4, December 1980

398 • P . A . V . Hal l and G. R. Dowling

error detection and error recovery [EGGE72,
GRAH75, GRIn71, LITE76, MICK78, SMIT70,
Wmc76]. In compilers an error should be
detected as early as possible, and a mean-
ingful error message output which will help
the user to correct the error himself. Then
the compiler should recover and keep on
parsing so as to subject the complete pro-
gram to syntax checking. In order to re-
cover, the compiler must compensate for
the error and thus make some "correction,"
but it does not necessarily produce an al-
ternative complete program which is cor-
rect and which could be executed.

Error-correction parsing goes the whole
way and produces a program string which
is valid and can be executed. An illustration
at this point may help. Morgan reported an
error-correcting system used with the
CUPL compiler at Cornell University
[MORG70]. The card deck

/JOB 2065 MORGAN, H 10S 30P
/CUP6
READ ROWSUB, COLSUB, NOCOLS
MATSUB ffi

ROWSUB + COLSUB * NOCOLS
WRITE MATSBU
STPO

*DATA
3.0 4, 5

/END JOB

contains a keypunching error in one job
control card and two errors in the program.
Their system would have corrected these
errors without requiring a rerun. Of course,
such corrections may be wrong, and in fact
dangerous in that they do not agree with
the programmer's original intention, but
Morgan's system was used favorably.

Error correction during language analysis
has been widely reported, starting with
some very early ideas by Irons [IRo1~63]
and Freeman [FREE63]. There was then a
lapse of several years before Morgan's work
and an ad hoc approach by James and
Partridge [JAME73], and then error correc-
tion in languages was put on a sound theo-
retical footing. A theoretical analysis had
been given by Hopcroft and Ullman
[HoPc66] in 1966, and this was followed by
full error-correction techniques for most
classes of languages being reported in the
literature during the early 1970s.

Regular languages were treated by Wag-
ner in 1974 [WAGN74b] using a dynamic
programming approach similar to the one
developed with Fischer for simple string
matching [WAGN74a]. A function f (A, i) is
defined. This measures the best match be-
tween the first i symbols of the input string
and the strings generated by starting with
the start symbol S and ending with the
nonterminal A. The recurrence formulas
for computing f (A, i) foll~)w directly from
the grammar. Terminal productions A --. a
are rewritten as A --, a# , where # ~ VN O
VT. The recurrence relations are

f (s , o) = o,

f (A , i) ffi min{ m i n A [f (B , j - - 1)

+ d(s,, a)],
f (A. i - 1) + 1,

rain [f (B, i) + 11}
allB B.-.aA

f (# , n) ffi difference of the best match,

where again following the notation of Sec-
tion 3.2

d(s,, a) ffi 0 if s, ffi a

ffi 1 otherwise,

and the insertion/omission penalty is 1.
This algorithm for regular grammars has

complexity which is linear in the length of
the input string, but of course depends upon
some function of the size of the grammar.
Independently, and at about the same time,
Hall and Dowling discovered the same al-
gorithm and applied it to speech recogni-
tion [DOWL74]. Figure 8 gives a matching
graph for regular grammars; there is an
obvious similarity here with Figure 2.

Context-free languages, because of their
importance for programming, have received
considerable attention [AHO72, Fu76,
FUNG75, LEVY75, LYON74, TANA78,
WAGN72]. Aho and Peterson [AHo72] add
error productions to their grammar, and
select derivations with fewest error produc-
tions using an Earley parser [EARL70].
Lyons [LYON74] by contrast tackles errors
directly using dynamic programming prin-
ciples, without the need to resort to error
productions. He also uses the Earley parser.
Levy concentrates on local corrections to

Computing Surveys, Vol. 12, No. 4, December 1980

gain parsing speed, while Tanaka and Fu
use a Cocke-Younger-Kasami parser and
Chomsky normal form. Teitlebaum, by con-
trast, takes an algebraic approach to lan-
guage analysis, modeling the error-produc-
tion process by a weighted sequential trans-
ducer, to produce an elegant method for
error correction. While recognition of a con-
text-free language theoretically can be done
as fast as matrix multiplication (O(n 2"61)
[PAN79]), normal parsing methods are of
n 3 complexity [HoPc69, EARL70], and by
suitable and careful choice of method, the
error-correction parsers can also have com-
plexity n 3 [LYON74, TEIT76, WAGN72].
Fung and Fu [FUNG75] consider only sub-
stitution errors, allowing for different prob-
abilities for different substitutions of char-
acters, and thus obtain probabilities for
transformations from one string into an-
other. They give an error-correcting parser
which returns the string with highest prob-
ability.

Using probabilities, one can take into
account the frequency with which particu-
lar linguistic constructs are used. This is
done by Fu, who adds probabilities of use
to each production (a stochastic grammar)
and adopts the Aho and Peterson algorithm
to handle these probabilities, selecting the
most likely derivation for a given string.
Clearly Fu's method can easily be applied
to regular grammars. A regular grammar
could be arranged to generate a particular
set of strings and thus overcome the objec-
tions to probabilistic string similarity at the
end of Section 3.2.

Best-match recognition in context-free
languages has also been studied in speech
recognition. A number of systems are sur-
veyed by Erman et al. [ERMA80]. The pro-
cess of recognizing connected speech is rep-
resented as problem solving using a se-
quence of "knowledge systems," where the
selection of a best match is heuristic. This
process is clearly equivalent to a bottom-up
parse, and the discussion of the speech rec-
ognition methods surveyed could be com-
plemented with a comparison based on lan-
guage analysis.

Correction for context-sensitive lan-
guages has been investigated by Tanaka
and Fu [TANA78]. They use the Cocke-
Younger-Kasami parser, and although they

Approximate String Ma~vhing • .399

G ', ({S,A,B}, {a ,b} , I$- taA ", A.,t.aB, B..H~, B*.,,b~, $)

(a)

a

b

a

2

4) "~ (A, 4)

(s, o) , . , , , ~ (A i o)......._~(s, o) -(e~ o)

IS, llmmmmmL~tl~, 1) "- .~1~, 11
I ~ 0.. I / 1 ;

21, ~1@, 21

i
~, 41 "~ (Be 4)mmmmmm)(~, 4)

2, k 2 J 1 2

(bL

abaa abaa abaa

(c)
FIGURE 8. Example of error correction in a regular

grammar. A graphical representation is used; the
regular language is represented by a s~te-transition
graph in (a) and this is combined with the matching
string "abaa" in (b) to give a graph in which the
best match problem has again become a shortest
path problem. The edge weights axe the mismatch
penalties, and all horizontal and vertical paths have
a weight of 1. The diagonal edges have d (s , a) . . 0
ff s, = a, and I otherwise. Each node is labeled with
its "coordinates," and the smallest mismatch from
(S, 0) to that node. The manner of the three best
matches, shown by the heavy lines, is given in (c).

do not actually use dynamic programming,
they formulate their solution~ in an equiva-
lent way.

5. SUMMARY

When tackling a string matching problem
where retrieval is to be achieved even with
nonexact matches, it is important to ascer-
tain the source of the variation leading to
the need for nonexact matching.

Variations could be legitimate, as in the
use of alternative spellings or formatting

Computing Surveys, VoI. 12, NO. 4~ December 1980

°

400 • P . A . V . H a l l a n d G. R . D o w l i n g

characters. This leads to equivalence
classes and the methods reviewed in Sec-
tion 2. The methods available are highly
satisfactory, resting on conventional exact-
matching technology. Canonical forms of
equivalence classes should be used where
possible.

However variation could be due to errors
and like processes. Examples are typing
mistakes, spelling mistakes due to mishear- Aso72
ing, synonyms, and the whole range of en-
coding problems associated with speech
recognition. This leads us into the similar-
ity problems reviewed in Section 3. First it AKo75
is necessary to construct a difference func-
tion which correctly models the source of
variation; we have seen a number of pow- Ano76
erful difference functions based on dynamic
programming and on probabilities.

The real difficulties begin when we must ALBE67
search a large set of strings for an approxi-
mate match, guided by our difference func-
tion. While there are a number of ideas BACO73
about how to approach this problem, there
are no well-established or general ly appli- BELL76
cable methods . Mos t me thods described are
a imed a t compensa t ing for mis typing er-
rors. T h e r e is a grea t need here for research BIRK70
to give the current ly proposed m e t hods a
f i rm theoret ica l foundat ion and to genera te BLAI60
a l te rnat ive methods .

One class of str ing match ing p rob lems is
concerned with finding the bes t m a t c h in a BouR61
set of strings defined by a grammar. This
error-correcting problem is briefly reviewed
in Sect ion 4. BouR77

Finally, i t is interest ing to note t ha t dur-
ing the p repara t ion of this review, a spelling
correct ion p rog ram for mic rocompute r sys- BOYE77
terns was announced in the popula r com-
pu te r press [COMF80]. T h e p rog ram can
correct some spelling mis takes it finds in its BRYA76
input text using a 25,000-word list supplied
by Oxford Univers i ty Press and draws at-
tent ion to those it can recognize but not COME79
rectify. After the comple te t ex t has been

COMPS0 scanned, an opera t ion which processes
abou t 60 words per minute , a list of al tera- CORM71
tions with references is given. Wi th this
facility now avai lable on mic rocompu te r
systems, it should not be too long before
some of the techniques out l ined in this
pape r do find the i r way into large commer -
cial informat ion re t r ieval systems. DAVI62

ACKNOWLEDGMENTS

The authors would like to thank their employers for
providing facilities for this paper. It is a pleasure, too,
to thank the Associate Editor, Bruce Weide, and the
referees for their help in preparing this manuscript,
and in (dare we say) spotting numerous spelling mis-
takes.

DAME64

REFERENCES

AHo, A. V., ANY PETEESON, T. G. "A
minimum distance error-correcting parser
for context-free languages." SIAM J.
Comput. 1 (Dec. 1972), 305-312.
AHO, A. V., AND ~ORASICE, M.J . "Fast
pattern matching: An aid to bibliographic
search," Commun. ACM 18, 6 (June
1975), 333-340.
AHO, A. V., HmSCHSERG, D. S., AND ULL-
MAN, J.D. "Bounds on the complexity
of the longest common subsequence prob-
lem, J. ACM 23, 1 (Jan. 1976), 1-12.
ALBEROA, C.N. "String similarity and
misspellings," Commun. ACM 10, 5 (May
1967), 302-313.
BACON, M. D., AND BULL, G.M. DaNa
transmisswn, Macdonald and Jane's,
London, 1973.
BELL, D. "Programmer selection and
programming errors," Comput. J. 19, 3
(1976), 202-206.
BIRKOFF, G., AND MACLEAN, S. A sur-
vey o f modern algebra, Macmillan, New
York, 1970.
BLAIR, C.R. "A program for correcting
spelling errors," Inf. Control 3 (1960), 60-
67.
BOURNE, C. P., AND FORD, D. J. "A
study of methods for systemtically abbre-
viating English words and names," J.
ACM 8, 4 (Oct. 1961), 538-552.
BOURNE, C.P. "Frequency and impact
of spelling errors in bibiographic data
bases," Inf. Process. Manage. 13, 1
(1977), 1-12.
BOYER, R. S., AND MOORE, J. S."A fast
string searching algorithm." Commun.
ACM 20, 10 (Oct. 1977), 762-772.
BRYANT, J. R., AND FENLON, S.M. "The
design and implementation of an on-line
index," Database Technol. (ON-LINE,
1976).
COMER, D. "The ubiquitous B-tree,"
Comput. Surv. 11, 1 (June 1979), 121-138.
"Spelling correction program for micros,"
Comput. Weekly (July 3, 1980), 7.
CORMACK, R.M. "A review of classifi-
cation," Royal Statistical Soc. J. 134 (Se-
ries A, 1971), 321-367.
DAMERAU, F.J. "A technique for com-
puter detection and correction of spelling
errors," Commun. ACM 7, 3 (March
1964), 171-176.
DAVlDSON, L. "Retrieval of misspelled

Computing Surveys, Vol. 12, No. 4, December 1980

DowL74

DOWL77

EARLT0

EGGE72

ERMA80

FREE63

FU76

i
FUNG75

GALI79

GIMP76

GRAH75

GRIE71

HALL71

HALL78

HECK78

HOPC66

names in an airline's passenger record sys-
tem," Commun. ACM 5, 3 (March 1962),
169-171.
DOWLING, G. R., AND HALL, P. A.
V. "Elastic template matching in speech
recognition, using linguistic information,"
in 2nd Int. Joint Conf. Pattern Recogni.
tmn, Copenhagen, Aug. 1974, pp. 249-250
(available from IEEE.).
DOWLING, G.R. "Automatic segmenta-
tion of continuous speech," Ph.D. Disser-
tation, The City University, London, 1977.
EARLEY, J. "AII efficient context-free
parsing algorithm," Commun. ACM 13, 2
(Feb. 1970), 94-102.
EGCERS, B. "Error reporting, error
treatment and error correction in AI~OL
translation, part II," in 2nd Annual Meet-
ing, G.I., Karlsruhe, Oct. 1972.
ERMAN, L. D., HAYES-ROTH, F., LESSER,
V. R., AND REDDY, D.R. "The HEAR-
SAY-II speech understanding system: In-
tegrating knowledge to resolve uncer-
tainty," Comput. Surv. 12, 2 (June 1980),
213-253.
FREEMAN, D. "Error correction in
CORC: The Cornell computing language,"
Ph.D. Dissertation, Cornell University,
Ithaca, N.Y., 1963.
Fu, K.S . "Error-correcting parsing for
syntactic pattern recognition," in Data-
structures, computer graphics and pat-
tern recognition, Klinger et al. (Eds.) Ac-
ademic Press, New York, 1976.
FUNG, L. W., AND FU, K.S. "Maximum-
likelihood syntactic decoding," IEEE
Trans. Inform. Theory IT-21 (July 1975),
423-43O.
GALIL, Z. "On improving the worst case
running ttme of the Boyer-Moore string
matching algorithms," Commun. ACM
22, 9 (Sept. 1979), 505-508.
GIMPEL, J. F. Algorithms m SNOBOL
4, Wiley-Interscience, New York, 1976.
GRAHAM, S. L., AND RHODES, S.
P. "Practical syntactic error recovery,"
Commun. ACM 18, 11 (Nov. 1975), 639-
650.
GRIES, D. Compiler construction for
digital computers, Wiley, New York,
1971.
HALL, P. A.V. "Branch and bound and
beyond," in Int Joint Conf. Artificial In-
telhgence, Imperial College, London,
Sept. 1971, pp. 641-650 (available from
British Computer Society).
HALL, P. A V., AND HUSSEIN, I. "Design
of information systems for Arabic," in In-
formation systems methodology, ECI 78
Conference, Venice, Springer-Verlag,
New York, 1978, pp. 643-663.
HECKEL, P. "A technique for isolating
differences between files," Commun.
ACM 21, 4 (April 1978), 264-268.
HOPCROFT, J. E., AND ULLMAN, J.
D. "Error correction for formal lan-

Approximate String M~. Itihg • 401

guages," TecK Rep~ 52) ~aceb~n Univ.,
Princeton, N.J., Nov. 1 9 6 ~

HoPc69 HoPCRO~r, J . .E , , AND "UIJ~AN, J.
D. Formal "languages oh~d their rela-
tion to automata, Addis0n-Wesley, Read-
ing, Mass., 1969.

HUNT77 HUNT, J. W., AND SZYMANSKI, T .G. "A
fast algorithm for computing longest com-
mon subsequences," Commun. ACM 20,
5 (May 1977), 350-353.

IRON63 IRONS, E.T. "An error-correcting parser
algorithm" '~ Commun. ACM 6, 11 (Nov.
1963), 669-673.

JAME73 JAMES, E. B., AND PARTRIDGE, D.
P. "Adaptive correction of program
statements," Commun. ACM 16, 1 (Jan.
1973), 27-37.

JENK76 JENKS, R.D. 1976 ACa~ Conf. Symbolic
and Algebraic. Computation (ACM),
1976.

KNUT73 KNUTH, D. E. Sorting.and searching,
Addison-Wesley, Reading, Mass., 1973.

KNUT77 KNUTH, D. E., MORRIS, J. H., AND PRATT,
V.R. "Fast pattern matching in strings,"
SIAM J. Comput, 6 (1977), 323-350.

LEVE66 LEVENSHTEIN, V. I. ""Binary codes ca-
pable of co/retting deletions, insertions,
and reversals," Soy. Phys. Dokl. 10 (Feb.
1966), 707-710.

LEVY75 LEVY, J. P. "Automatic correction of
syntax errors ~ programming languages,"
Acta Inf. 4 (1975), 271-292.

LiPs79 LIPSKI, W., JR. "On semantic issues con-
nected with incomplete information data-
bases" ACM Trans. Database Syst. 4, 3
(Sept. 1979), 262-296.

LITE76 LITECKY, C. R., AND DAVIS, G.B. "A
study of errors, error.proneness, and error
diagnosis in COBOL," Commun. ACM 19,
1 (Jan. 1976), 33-37.

LOWR75 LOWRANCE, S.) AND WAGNER, R.
A. "An extension of'the string-to-string
correction problem," J. ACM 22, 2 (April
1975), 177-183.

LYON74 LYON, G. "Syntax.directed least-errors
analysis for conte~t=free languages: A
practical approach," Commun. ACM 17,
1 (Jan, 1974), 3-14., "'

MART75 MARTIN, J. Com~uter data base orga-
nizatton, Prentice-Hall,~nglewood Cliffs,
N.J., 1975.

MicE78 MICKUNAS, M. ~D., ~ D MODRY, J.
A. "Automatic error recovery for LR
parsers," Commun. ACM 21, 6 (June
1978),.459-465.

MORG70 MORGAN, H.L. "Spelling correction in
systems progran~" Commun. ACM 13, 2
(Feb. 1970), 90-94.

MUTH77 MUTH, F. E., JR., AND THARP, A.
L. "Correcting human error in alphanu-
meric terminal input," Inf. Process. Man-
age. 13, 6 (1977), 329-337.

NEWE73 NEWELL, A., BARNETT, J., FORGIE, J. W.,
GREEN, C., KLA'I'r, D., LICSXJDEE, J. C.
R., MU~SON, J., REVDY, D. R., AND
WOODS, W. A. "Speech understanding

Computing Surveys, VoL 12, No. 4,~Decomber 1980

402

ODELI8

PAw77

PAN79

PETE61

Poz'r66

RADE76

RAHM68

RISE74

RIVE77

ROGE61

SAKO79

SALT68

SALT78

SHA~i8

SHAP77

SMIT70

SLIN79

P. A. V. Hall and G. R. Dowling

systems. Final report of a study group," in
Artificial intelligence, North-Holland El-
sevier, New York, 1973. SZAN69
0DELL, M. K., AND RUSSELL, R.C. U,S.
Patent nos. 1,261,167 (1918) and 1,435,683
(1922).
PAICE, C.D. Information retrieval and SzAN73
the computer, MacDonald and Jane's
Computer Monographs, London, 1977.
PAN, V. YA. "Field extension and tri- TANA78
linear aggregating, uniting, and canceling
for the acceleration of matrix multiplica-
tions," in Proe. 20th Annual Syrup. Foun-
dations of Computer Science, Oct. 1979, TARJ75
pp. 28-38.
PETERSON, W. W. Error.correcting
codes, Wiley, New York, 1961. TEIT76
POTTER, R. K., KoPP, G. A., AND KOPP,
H. G. V~sible speech, Dover, New York,
1966.
RAVECKL T. "New approach to the ULLM77
problem of information system effective-
ness evaluation," Inf. Process. Manage.
12, 5 (1976), 319-326.
RAHMAN, N. A. A course in theoretwal
statistics, Griffin, London, 1968. UNES76
RISEMAN, E. M., AND HANSON, A.R. "A
contextual post-processing system for er- VELI70
rot-correction using binary n-grams,"
IEEE Trans. Comput. C-23, 5 (1974),
480-493.
RIVEST, R.L. "On the worst-cast behav- VINT68
ior of string-searching algorithms," S/AM
J. Comput. 6, 4 (Dec. 1977), 669-673.
ROGET The new Roger's thesaurus, N.
Lewis (Ed.), Putnam, 1961. WAGN72
SAKOE, H. "Two level DP.matching--A
dynamic programming based pattern
matching algorithm for connected word
recognition," IEEE Trans. Acoust.,
Speech, Signal Proc. ASSP-27, 6 (Dec.
1979), 588-595.
SALTGN, G. Automatic reformation or-
ganization and retrieval, McGraw-HiU,
New York, 1968.
SALTON, G., AND WONG, A. "Generation
and search of clustered files," ACM
Trans. Database Syst. 3, 4 (Dec. 1978),
321-346.
SHAFFER, L. H., AND HARDWICH,
J. "Typing performance as a function of
text," Qt. J. Exper. Psychol. 20, 4 (1968),
360-369. WILC76
SHAPIRO, M. "The choice of reference
points in best match file searching," Com-
mun. ACM 20, 5 (May 1977), 339-343.
SMITH, W.B. "Error detection in formal
languages," J. Comput. Syst. Sci, 4 (1970),
385-405.
SLINN, C. "Retrieval mechanisms and
Arabic strings," in 5th Saudi Arabian

WAGN74a

WAGN74b

WHIT76

WONG76

RECEIVED JANUARY 1980; FINAL REVISION ACCEPTED AUGUST 1980.

Computer Conf., Dhahran, Saudi Arabia,
March 1979.
SZANZER, A. J. "Error-correcting
methods in natural language processing,"
in Information processing 68, IFIP 1969,
pp. 1412-1416.
SZANZER, A.J. "Bracketing technique in
elastic matching," Comput. J. 16, 2 (1973),
132-134.
TANAKA, E., AND FU, K.S. "Error-cor.
recting parsers for formal languages,"
IEEE. Trans. Comput. C-27, 7 (July
1978), 605--616.
TAP, JAN, R.E. "Efficiency of a good but
not linear set union algorithm," J. ACM
22, 2 (April 1975), 215-225.
TEITELBAUM, R. "Minimal distance
analysis of syntax errors in computer pro-
grams," Ph.D. Dissertation, Carnegie-
Mellon Univ., Pittsburgh, Pa., 1976.
ULLMAN, J .R. "A binary n-gram tech-
nique for automatic correction of substi-
tution, deletion, insertion and reversal er-
rors in words," Comput. J. 20, 2 (1977),
141-147.
UNESCO SPINES thesaurus, The
UNESCO Press, Paris, 1976.
VELICHKO, V. M., AND ZAGARUIKO, N.
G, "Automatic recognition of 200
words," Int. J. Man.Mack Stud. 2 (1970),
223-234.
VINTSYUK, T. K. "Speech discrimina-
tion by dynamic programming," Kiber-
netika 4, 1 (1968), 81-88 (in Russian);
translated in Cybernetics 4, 1, 52-58.
WAGNER, R.A. "An n 3 minimum edit-
distance correction algorithm for context-
free languages," Tech. Rep., Systems and
Information Sci. Dept., Vanderbilt Univ.,
Nashville, Tenn., 1972.
WAGNER, R. A., AND FISCHER, M.
J. "The string-to-string correction prob-
lem," J. ACM 21, 1 (Jan 1974), 168-178.
WAGNER, R.A. "Order-n correction for
regular languages," Commun. ACM 17, 5
(May 1974), 265-268.
WHITE, G. M., AND NEELY, R.
B. "Speech recognition experiments
with linear prediction, bandpass filtering,
and dynamic programming," IEEE
Trans. Acoust., Speech, Signal Proc.
ASSP-24, 2 (April 1976), 183-188.
WILCOX, T. R., DAvis, A. M., AND Tm-
DALL, M.H. "The design and implemen-
tation of a table-driven interactive diag-
nostic programming system," Commun.
ACM 19, 11 (Nov. 1976), 609-616.
WONG, C. K., AND CHANVRA, A.
K. "Bounds for the string editing prob-
lem," J. ACM 23, 1 (Jan. 1976), 13-16.

Computing Surveys, Vol. 12, No. 4, December 1980

