
Distributed Computing
with Gambit

Marc Feeley
November 24, 2011

1

GAMBIT GAMBIT⟷

Thursday, November 24, 2011

Overview

“Teleportation” Distributed Computing demo

Showcases advanced Gambit Scheme features:

Networking
Threads
Serialization
Continuations

2
Thursday, November 24, 2011

Demo
Each node on a LAN spawns
a new thread every 20 secs

The threads bounce within the
screen

When a thread bounces, it
tries to teleport to the screen
of another node

Threads die after 100 steps
3

Thursday, November 24, 2011

Top-down Code Review

4
Thursday, November 24, 2011

(define (go)

 (define (bounce period name)
 ...)

 ;; spawn a bouncing thread every 20 secs

 (let loop ()

 (spawn
 (bounce (+ .2 (* .2 (random-real)))
 (host-name)))

 (sleep 20)

 (loop)))

(go)

5
Thursday, November 24, 2011

;; Single-node version (no teleportation)

(define (bounce period name)
 (let loop ((pos 2) (dir 1) (ttl 100))
 (if (> ttl 0)
 (begin

 (set-row pos (list name " " ttl))
 (sleep period)
 (set-row pos "")

 (if (and (> pos top) (< pos bot))

 ;; not on fence so just move
 (loop (+ pos dir) dir (- ttl 1))

 ;; must bounce
 (begin

 (loop (- pos dir) (- dir) (- ttl 1))))))))

6

pos

dir ttl

name

Thursday, November 24, 2011

;; Multi-node version (with teleportation)

(define (bounce period name)
 (let loop ((pos 2) (dir 1) (ttl 100))
 (if (> ttl 0)
 (begin

 (set-row pos (list name " " ttl))
 (sleep period)
 (set-row pos "")

 (if (and (> pos top) (< pos bot))

 ;; not on fence so just move
 (loop (+ pos dir) dir (- ttl 1))

 ;; must bounce
 (begin

 (let ((n (random-node)))
 (if (not (eq? n current-node))
 (begin (swoosh) (teleport n) (bell))))

 (loop (- pos dir) (- dir) (- ttl 1))))))))

7

pos

dir ttl

name

Thursday, November 24, 2011

(define (teleport destination)

 ;; get the thread’s continuation

 (continuation-capture
 (lambda (k)
 (without-exception ;; guard against rpc failure
 (begin

 ;; try to resume continuation in a new thread
 ;; at the destination in no more than 5 seconds

 (rpc destination
 (begin
 (spawn (continuation-return k #t))
 'done)
 5)

 ;; if teleportation went OK, kill
 ;; the original thread

 (halt))))))

8
Thursday, November 24, 2011

Continuations
A continuation is an object which represents
“the rest of the computation”

In most languages, continuations are hidden
and correspond to the call stack

In Scheme, continuations are reified, meaning
the programmer can obtain, store and invoke
them explicitly

In standard Scheme, this is done using call/cc

Gambit has another API: continuation-capture
9

Thursday, November 24, 2011

Cont. Example (part 1)

(define (C z)
 ...)

(define (B y)
 (* (C 3) y))

(define (A x)
 (+ (B 2) x))

(A 1)

A

1

ra 1
x 1

3

2

ra
z 3

3

ra
y 2

2

ra 0

B

C

Runtime
stack

Thursday, November 24, 2011

Cont. Example (part 2)

(define (C z)
 (continuation-capture
 (lambda (k)
 (continuation-return
 k
 (* z z)))))

(define (B y)
 (* (C 3) y))

(define (A x)
 (+ (B 2) x))

(A 1)

A

1

ra 1
x 1

3

2

ra
z 3

3

ra
y 2

2

ra 0

B

C

ra 1
x

ra 3

ra
y

2

ra 0

k

Runtime
stack

Thursday, November 24, 2011

(rpc destination
 (begin
 (spawn (continuation-return k #t))
 'done)
 5)

12

Continuation Serialization
The implementation of the rpc macro must
serialize the continuation k to send it to the
destination (where it will be deserialized)

For this to be possible, all the objects reachable
from the continuation must be serializable

Thursday, November 24, 2011

13

Continuation Serialization

Unfortunately, continuations may contain
objects that are not serializable:

Foreign data (such as ptrs to C structures)

I/O ports (if they refer to an OS resource)

Threads (they indirectly refer to all other
threads)

 In the teleportation demo: current input/
output ports and nodes (which are threads)

Thursday, November 24, 2011

14

Object Serialization

Serialization/deserialization is done with
(object->u8vector obj [encoder])
(u8vector->object u8vect [decoder])

The optional encoder/decoder functions allow
giving a serialization semantics to objects
which would not be otherwise serializable

These functions are called on every sub-object
during the DFS traversal

Thursday, November 24, 2011

> (define (pprinter port)
 (lambda (x) (pp x port)))

> (define p
 (pprinter (current-output-port)))

> (p '(a b c))
(a b c)

> (define v (object->u8vector p))
*** ERROR IN ##object->u8vector
 -- can't serialize #<mutex #2 #f>

15
Thursday, November 24, 2011

;; Map current input/output ports to those of the
;; destination.

(define-type ser-stdin
 id: FA2D330A-F35B-4B81-A5AD-D75B742D687D)

(define-type ser-stdout
 id: CB3FD64E-2734-4D9E-BAB5-463029CC9F40)

(define (encode obj)
 (object->u8vector
 obj
 (lambda (x)
 (cond ((eq? x (current-input-port)) (make-ser-stdin))
 ((eq? x (current-output-port)) (make-ser-stdout))
 (else x)))))

(define (decode u8v)
 (u8vector->object
 u8v
 (lambda (x)
 (cond ((ser-stdin? x) (current-input-port))
 ((ser-stdout? x) (current-output-port))
 (else x)))))

16
Thursday, November 24, 2011

> (define (pprinter port)
 (lambda (x) (pp x port)))

> (define p
 (pprinter (current-output-port)))

> (define v (encode p))

> (define q (decode v))

> (q '(a b c))
(a b c)

> (u8vector-length v)
4359

17
Thursday, November 24, 2011

Node Discovery
Each node has a manager thread which listens
for incoming TCP connections on port 12345

Each node periodically searches the LAN for
other nodes with an open port 12345

For efficiency, the search is done concurrently
(100 concurrent connections)

A broadcast would be more efficient, but it is
not supported by Gambit

18
Thursday, November 24, 2011

;; Search LAN concurrently for DCS servers.

(define (discover-local-DCS-servers ip found)
 (let* ((nm #xffffff00)
 (throttle (make-throttle 100)))
 (pfor 1
 (- #xffffffff nm)
 (lambda (i)
 (throttle
 (lambda ()
 (check-for-DCS-server
 (num->ip
 (+ i (bitwise-and nm (ip->num ip))))
 found)))))))

(define (check-for-DCS-server ip found)
 (let ((conn (DCS-connect ip)))
 (if conn
 (found conn))
 (sleep 0.5)))

19
Thursday, November 24, 2011

RPC

RPC call sends a closure and receives a closure

The source node contacts the destination node
and sends it a (serialized) closure which is
called at the destination in a new thread

The destination returns a closure, which, when
called, returns the computed result or raises
the exception that was raised at the destination

20
Thursday, November 24, 2011

;; RPC examples.

> (nodes)
(#<thread #3> #<thread #4> #<thread #2>)

> (table->list ip2node)
((#u8(192 168 0 100) . #<thread #2>)
 (#u8(192 168 0 102) . #<thread #3>)
 (#u8(192 168 0 103) . #<thread #4>))

> (map (lambda (n) (rpc n (host-name)))
 (nodes))
("macro.local" "Marc-Feeleys-iPod" "mega.local")

> (rpc #4 (host-name))
"Marc-Feeleys-iPod"

> (rpc #4 (/ 1 0))
*** ERROR IN (console)@19.1 -- Divide by zero
(/ 1 0)
1>

21
Thursday, November 24, 2011

Questions?

22
Thursday, November 24, 2011

