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Abstract

Detecting failures is a fundamental issue for fault-tahemin distributed systems. Recently, many people have
come to realize that failure detection ought to be provided@me form of generic service, similar to IP address
lookup or time synchronization. However, this has not bagtessful so far. One of the reasons is the difficulty
to satisfy several application requirements simultankowsen using classical failure detectors.

We present a novel abstraction, called accrual failurecti@te, that emphasizes flexibility and expressiveness
and can serve as a basic building block to implementingraifietectors in distributed systems. Instead of providing
information of a boolean nature (trust vs. suspect), a¢¢ailare detectors output a suspicion level on a continuous
scale. The principal merit of this approach is that it favarsiearly complete decoupling between application
requirements and the monitoring of the environment.

In this paper, we describe an implementation of such an atdailure detector, that we call the failure
detector. The particularity of the failure detector is that it dynamically adjusts to curreetwork conditions
the scale on which the suspicion level is expressed. We zedlthe behavior of oup failure detector over an
intercontinental communication link during several dagsir experimental results show that opifailure detector
performs equally well as other known adaptive failure d@e@cmechanisms, with an improved flexibility.

I. INTRODUCTION

It is well-known that failure detection constitutes a fundatal building block for ensuring fault toler-
ance in distributed systems. For this reason, many peopklieen advocating that failure detection should
be provided as a service [1]-[5], similar to IP address I@olDNS) or time synchronization (e.g., NTP).
Unfortunately, in spite of important technical breakthgbs, this view has met little success so far. We
believe that one of the main reasons is that the conventiooalean interaction (i.e., trust vs. suspect)
makes it difficult to meet the requirements of several disted applications running simultaneously. For
this reason, we advocate a different abstraction that liEpsupling application requirements from issues
related to the underlying system.

It is well-known that there exists an inherent tradeoff le#w (1)conservativefailure detection (i.e.,
reducing the risk of wrongly suspecting a running proceasy] (2) aggressivefailure detection (i.e.,
quickly detecting the occurrence of a real crash). Therste@ continuum of valid choices between these
two extremes, and what defines an appropriate choice isgiyroelated to application requirements.

One of the major obstacles to building a failure detectiorvise is that simultaneously running
distributed applications with different quality-of-s&® requirements must be able to tune the service
to meet their own needs without interfering with each otlerthermore, some classes of distributed
applications require the use of different qualities of gm\of failure detection to trigger different reactions
(e.g., [6]-[8]). For instance, an application can take autionary measures when the confidence in a
suspicion reaches a given level, and then take more dragiimna once the confidence raises above a
second (much higher) level.

Accrual failure detectors:Failure detectors are traditionally based on a boolearraat®n model
wherein processes can only either trust or suspect the ggesdhat they are monitoring. In contrast, we
propose a novel abstraction, called accrual failure deteethereby a failure monitor service outputs a
value on acontinuous scaleather than information of a boolean nature. Roughly speghimis value



captures the degree of confidence that a corresponding enediprocess has crashed. If the process
actually crashes, the value is guaranteeddorue over time and tend toward infinity, hence the name.
It is then left to application processes to set an apprapsaispicion threshold according to their own

guality-of-service requirements. A low threshold is praoegenerate many wrong suspicions but ensures
a quick detection in the event of a real crash. Converselygh thireshold generates fewer mistakes but
needs more time to detect actual crashes.

Example: Let us now illustrate the advantage of this approach withngple example. Consider a
distributed application in which one of the processes isgihesed as a master while all other processes
play the role of workers. The master holds a list of jobs thesds to be computed and maintains a list of
available worker processes. As long as jobs remain in itsthe master sends jobs to idle workers and
collects the results after they have been computed. Assuowetimat some of the workers might crash
(for simplicity, we assume that the master never crashext)sbme worker process, crash during the
execution; the master must be able to detect thahas crashed and take appropriate actions, otherwise
the system might block forever. With accrual failure detest this could be realized as follows. When
the confidence level reaches some low threshold, the mastglysflags the worker procesg, and
temporarily stops sending new jobsjg. Then, when reaching a moderate threshold, the masterlsance
all unfinished computations that were runninggnand resubmit them to some other worker processes.
Finally, when reaching a high threshold, the confidencejhdtas crashed is high, so the master removes
P from its list of available workers and releases all corresidog resources. Using conventional failure
detectors to implement such a simple behavior would be quithallenge.

Contribution: In this paper, we present the abstraction of accrual failletectors and describe an
adaptive implementation called the failure detector. Briefly speaking, the failure detector works as
follows. The protocol samples the arrival time of heartbestd maintains a sliding window of the most
recent samples. This window is used to estimate the ariwal of the next heartbeat, similarly to conven-
tional adaptive failure detectors [9], [10]. The distrilout of past samples is used as an approximation for
the probabilistic distribution of future heartbeat messadVith this information, it is possible to compute
a valuey with a scale that changes dynamically to match recent n&teonditions.

We have evaluated our failure detection scheme on a tratiseatal link between Japan and Switzer-
land. Heartbeat messages were sent using the user datagstonop (UDP) at a rate of about ten per
second. The experiment ran uninterruptedly for a periodnef week, gathering a total of nearly 6 million
samples. Using these samples, we have analyzed the belviw © failure detector, and compared it
with traditional adaptive failure detectors [9], [10]. Bygpiding exactly the same input to every failure
detector, we could ensure the fairness of the comparisoa.ré@sults show that the enhanced flexibility
provided by our approach does not induce any significantheaat.

Structure: The rest of the paper is organized as follows. Section Illle@aportant concepts and
definitions regarding failure detectors. Section Il déses the abstraction of accrual failure detectors.
Section IV presents an implementation of accrual failureecters called thep failure detector. The
behavior of they failure detector is evaluated in Section V, where it is coragawith other existing
failure detector implementations on a wide-area netwoektiSn VI discusses other related work. Finally,
Section VIl concludes the paper.

Il. FAILURE DETECTORS BASIC CONCEPTS& IMPLEMENTATIONS

This section briefly reviews important results concerniagufe detection. We first outline the basic
concepts, describe important metrics, and discuss bapactsof their implementations. At the end of
the section, we describe two prior implementations of adegdtilure detectors that we later use as a
reference to compare with oyr failure detector.



A. Unreliable failure detectors

Being able to detect the crash of other processes is a fundalmssue in distributed systems. In
particular, several distributed agreement problems, siscBonsensus, cannot be solved deterministically
in asynchronoussystems if even a single process might crash [11]. The iniipiissis based on the fact
that, in such a system, a crashed process cannot be distreguirom a very slow one.

The impossibility result mentioned above no longer holdgh# system is augmented with some
unreliable failure detector oracle [12]. An unreliableldagé detector is one that can make mistakes, to a
certain degree. As an example, we present here the prapefteefailure detector of classP (eventually
perfect), which is sufficient to solve the Consensus problem:

Property 1 (Strong completenesshhere is a time after which every process that crashes isgremntly
suspected by all correct processes.

Property 2 (Eventual strong accuracyYhere is a time after which correct processes are not suespect
by any correct process.

B. Quality of service of failure detectors

Chen et al. [10] propose a set of metrics to evaluate the gualgervice (QoS) of failure detectors. For
simplicity and without loss of generality, they considenma@e system as follows. The system consist of
only two processes callegandg, where process monitors procesg. Proces® can possibly be subject
to crash failures, in which case the crash is permanent.drséguel, we consider the same system, and
use the following subset of Chen’s metrics.

Definition 1 (Detection timd’p): The detection time is the time that elapses since the craghaofl
until ¢ begins to suspegt permanently.

Definition 2 (Average mistake rate): This measures the rate at which a failure detector generates
wrong suspicions.

Notice that the first definition relates to the completeneksreas the other one relates to the accuracy
of the failure detector.

C. Heartbeat failure detectors

In this section, we present a brief overview of heartbeaedaimplementations of failure detectors.
Assume that processes have also access to some local plyysatagiving them the ability to measure
time. These clocks may or may not be synchronized.

Using heartbeat messages is a common approach to implexméaiure detectors. It works as follows
(see Fig. 1): process—i.e., the monitored process—periodically sends a heartinessage to procegs
informing ¢ thatp is still alive. The period is called the heartbeat interXxal Procesg suspects procesgs
if it fails to receive any heartbeat message frprfor a period of time determined by a timeafdt,, with
Ay, > A;. A third value of importance is the network transmissionagiedf messages. For convenience,
we denote byA,. the average transmission time experienced by messages.

In the conventional implementation of heartbeat-baseldriaidetection protocols, the timeow;, is
fixed as a constant value. Upon receiving a heartbeat, macesits for the next heartbeat for at most
Ay, units of time, after which it begins to suspect proceséno new heartbeat has been received.

Obviously, the choice of a timeout value must be larger thgnand is dictated by the following
tradeoff. If the timeout4\,,) is short, crashes are detected quickly but the likelinésgrong suspicions
is high. Conversely, if the timeout is long, wrong suspicitsesome less frequent, but this comes at the
expense of detection time.

An alternative implementation of heartbeat failure deiectsets a timeout based on the transmission
time of the heartbeat. The advantage of this approach igheatmnaximal detection time is bounded, but

1An asynchronous distributed system is one in which there are no boundsnemunication delays and on the speed of processes.
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Fig. 1. Heartbeat failure detection and its main parameters.

its drawback is that it relies on clocks with negligible thiaind a shared knowledge of the heartbeat
interval A;. This last point can become a problem in practice, when tigalaeity of the sending of
heartbeats cannot be ensured and a short interval makesnihg tnaccuracies due to operating system
scheduling take more importance (i.e., the actual intediféérs from the target one as a result).

Each of the two approaches has its own merits that dependeooocifiiext, so we believe that there is
no clearcut answer to the question of choosing one over ther.ot

D. Adaptive failure detectors

The goal of adaptive failure detectors is to adapt to chapgetwork conditions. Most adaptive failure
detectors presented in the literature are based on a hatstipetegy (although nothing seems to preclude
a query-response interaction style, for instance). Thacjpal difference with using a fixed heartbeat
strategy is that the timeout is modified dynamically acaaogdio network conditions.

1) Chen-FD: Chen et al. [10] propose an approach based on a probabilistigsas of network traffic.
The protocol uses arrival times sampled in the recent pasirtgpute an estimation of the arrival time of the
next heartbeat. The timeow,, is set according to this estimation and a constant safetgimaris added.
The estimation of the next heartbeat arrival time is recaegbafter each new heartbeat arrival. The safety
margin is computed once, based on quality-of-service reqents. The authors propose two versions of
their protocol; one that relies on synchronized clocks, arsgcond one that uses unsynchronized clocks
with negligible drift. We have done our comparisons basedhensecond version of their protocol.

2) Bertier-FD: Bertier et al. [9] propose an adaptive failure detector basedhe same approach,
but using a different estimation function. Their estimaticombines Chen’s estimation with a dynamic
estimation based on Jacobson’s estimation of the roupdtime [13]. The resulting failure detector
provides a shorter detection time, but generates more wsasgicions than Chen’s estimation, according
to their measurements on a LAN.

3) Note on setting the heartbeat perioliis clear that the heartbeat peridd is a factor that contributes
to the detection time. However, in contrast to a common feélller [14] shows that, on several different
networks,A; is not much determined by quality-of-service requiremehbts rather by the characteristics
of the underlying system.

An informal argument is as follows. Roughly speaking, theedegbn time is equally determined by
three parametersd;, A,., and some additional margin (with A,, ~ A; + a). A, is caused by the
network and cannot really be tuned.

« On the one hand, if\; is a lot smaller than\,,, then reducing it will have little effect on reducing

the detection time. Indeed, the detection time cannot plysbe shorter than the transmission time.
In fact, reducingA; further would generate both a larger amount of traffic on teevork and a
higher activity in the network stacks. This could in turnreaseA,,.

%A straightforward implementation requires synchronized clocks. Chah §0] show how to do it with unsynchronized clocks, but this
still requires a negligible drift between the clocks.
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Fig. 2.  Structure of traditional failure detectors. Monitoring andfig. 3.  Structure of accrual failure detectors. Monitoring and
interpretation are combined. Interactions with applications and prioterpretation are decoupled. Applications interpret a common value
tocols is boolean. based on their own interpretation.

« On the other hand, if\; is a lot larger tham .., thenA; will almost entirely determine the detection
time. Increasing it further will increase the detection girmccordingly, but it will have nearly no
effect in reducing the already low load on the network.

Hence, we can conclude that any reasonable valud;afhould be roughly equal to the average trans-
mission timeA,.. The only exception that we could see is when an upper linsieison the acceptable
usage of network bandwidth for control messages.

Although the above argument is rather informal, it suggtss there exists, with every network, some
nominal range for the paramet&r; with little or no impact on the accuracy of the failure detectn other
words, we can consider that the paramefgris given by the underlying system rather than computed
from application requirements.

[11. ACCRUAL FAILURE DETECTORS

The principle of accrual failure detectors is simple. lasteof outputting information of a boolean
nature, accrual failure detectors output suspicion in&drom on a continuous scale. Roughly speaking,
the higher the value, the higher the chance that the moditprecess has crashed.

In this section, we first describe the use of accrual failletectors from an architectural perspective,
and put this in contrast with conventional failure detestofrhen, we give a more precise definition of
accrual failure detectors. Finally, we conclude the sechip showing the relation between accrual failure
detectors and conventional ones. In particular, we show &ovaccrual failure detector can be used to
implement a failure detector of clagsP.

A. Architecture overview

Conceptually, the implementation of failure detectors oa téceiving side can be decomposed into
three basic parts as follows.
1) Monitoring. The failure detector gathers information from other psses, usually through the
network, such as heartbeat arrivals or query-responsgsiela
2) Interpretation Monitoring information is used and interpreted, for imgta to decide that a process
should be suspected.
3) Action Actions are executed as a response to triggered suspicitis is normally done within
applications.
The main difference between traditional failure detectord accrual failure detectors is which component
of the system does what part of failure detection.
In traditional timeout-based implementations of failuretettors, the monitoring and interpretation
parts are combined within the failure detector (see FigTBe output of the failure detector is of boolean
nature;trust or suspectAn elapsing timeout is equated to suspecting the monitpredess, that is, the



monitoring information is already being interpreted. Apations cannot do any interpretation, and thus
are left with what to do with the suspicion. Unfortunatelyspicion tradeoffs largely depend on the nature
of the triggered action, as well as its cost in terms of penéoimce or resource usage.

In contrast, accrual failure detectors provide a loweelabstraction that avoids the interpretation of
monitoring information (see Fig. 3). Some value is assedatith each process that represents a suspicion
level. This value is then left for the applications to int&p For instance, by setting an appropriate
threshold, applications can trigger suspicions and perfappropriate actions. Alternatively, applications
can directly use the value output by the accrual failuredeteas a parameter to their actions. Considering
the example of master/worker described in the introductibe master could decide to allocate the most
urgent jobs only to worker processes with a low suspicioellev

B. Definition

An accrual failure detector is defined as a failure detedtat butputs a value associated with each of
the monitored processes, instead of a set of suspectedspescdn the simplified model considered in
this paper (two processesand g, whereq monitorsp), the output of the failure detector gfover time
can be represented by the following function (“suspicioreleof p”).

susp_level ,(t) > 0 Q)

The values output by an accrual failure detector module eéfia functionsusp level,, and must satisfy
the properties below. The first two properties specify what dutput ofsusp_level (t) should be if the
process is faulty, whereas the remaining two properties specifytvtha output should be i is correct.

Property 3 (Asymptotic completenessf):processp is faulty, the suspicion levetusp level (t) tends
to infinity as time goes to infinity.

Property 4 (Eventual monotony)f processp is faulty, there is a time after whickusp_level (t) is
monotonic increasing.

Property 5 (Upper bound)Process is correct if and only ifsusp_level ,(t) has an upper bound over
an infinite execution.

Property 6 (Reset)if processp is correct, then for any tim&, susp_level,(t) = 0 for some timet > .

C. Transformation into conventional failure detection

Given the definitions of accrual failure detectors, it easyuse them to construct existing failure
detectors such as one of claé®. The algorithm below is similar to one proposed by Fetzerl.efl8].

Consider the following transformation algorithm descrifedthe situation where procegsmonitors
processp. Process; maintains two dynamic thresholds,,, and1},,, initialized to the same arbitrary
value greater than.

« S-transition Whenever the value ofusp_level, crosses the upper threshdl,;, upward,q updates
the value ofl},,, to 13,4, + 1, and begins to suspegt(or continues to suspegptif it does so already).

« T-transition Whenever the value ofusp_level,, crosses the lower threshdld,, downward,q updates
the value of7},,, to that ofT},,,, and stops suspecting

It is rather straightforward to prove that the above tramsftion satisfies the properties ofP.
Informally, strong completeness is ensured because tlesibldT;,,, is always finite (consequence of
Prop. 4) and must be eventually crossed (S-transition aof. ). Similarly, eventually strong accuracy
is ensured because, jf is correct, there is a time after which,,, is never crossed (S-transition and
Prop. 5), and; does not suspegt (T-transition and Prop. 6).

Now, it is important to stress that the above result does wotecin contradiction with the FLP
impossibility of Consensus [11]. Accrual failure detectonerely define an abstraction, and are hence
subject to the same restrictions as conventional failuteatiers. It is well-known that it is impossible
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to implement a failure detector of clags® deterministically in asynchronous systems. Likewise yaaic
failure detectors cannot be implemented deterministidallall possible asynchronous systems. However,
both kinds of failure detectors can be implemenpeababilistically.

V. | MPLEMENTATION OF THE (o ACCRUAL FAILURE DETECTOR

In the previous section, we have presented the genericaalistt of accrual failure detectors. Accrual
failure detectors can be implemented in many different wagsthis section, we present a practical
implementation that we call the failure detector, and that we had outlined in earlier wor&][1

A. Meaning of the value

As mentionedy failure detector implements the abstraction of an acciaillre detector. The suspicion
level of accrual failure detector is given by a value calledThe basic idea of the failure detector is
to express the value a@f on a scale that is dynamically adjusted to reflect currenvowdt conditions.

Let Tasts tnow, @nd Py (t) denote respectively: the time when the most recent heaneeareceived
(T1ast), the current timet,,,,), and the probability that a heartbeat will arrive more thdme units after
the previous oneH,.,(t)). Then, the value of is calculated as follows.

def
@(tnow) :e - logIO(Plater(tnow - T'last)) (2)

Roughly speaking, with the above formula,takes the following meaning. Given some threshéld
and assuming that we decide to suspeavhenp > ® = 1, then the likeliness that we will make a
mistake (i.e., the decision will be contradicted in the fatby the reception of a late heartbeat) is about
10 %. The likeliness is about % with & =2, 0.1 % with & = 3, and so on.

B. Calculatingy

The method used for estimatingis in fact rather simple. This is done in three phases. Hiedytbeat
arrive and their arrival times are stored in a sampling wnmd8econd, these past samples are used to
determine the distribution of inter-arrival times. Thirthe distribution is in turn used to compute the
current value ofp. The overall mechanism is described in Figure 4.



1) Sampling heartbeat arrivalsThe monitored proces® (n our model) adds a sequence number to
each heartbeat message. The monitoring procgess ¢ur model) stores heartbeat arrival times into a
sampling window of fixed sizéV'S. Whenever a new heartbeat arrives, its arrival time is storedthe
window, and the data regarding the oldest heartbeat iseatkligom the window. Arrival intervals are
easily computed. In addition, to constantly determine tle&amp and the variance?, two other variables
are used to keep track of the sum and sum of squares of all sanmpthe window.

2) Estimating the distribution and computigg The estimation of the distribution of inter-arrival times
assumes that inter-arrivals follow a normal distributidime parameter of the distribution are estimated
from the sampling window, by determining the mearand the variance? of the samples. Then, the
probability P,..(t) that a given heartbeat will arrive more thantime units later than the previous
heartbeat is given by the following formuia.

o\ 21

—+00
1 _(z-p)?
Plater(t) = e 22 dux (3)
t

= 1=F() (4)

where F'(t) is the cumulative distribution function of a normal distriton with meanu and variancer?.
Then, the value ofp at timet,,,, is computed by applying Equation 2 described in Section IV-A

V. EXPERIMENTAL RESULTS

In this section, we study the behavior of thefailure detector when used over a wide-area network.
The measurements have been taken in a rather extreme enemorfwide area network, short heartbeat
interval) to assess both the robustness and the scope a¢aplify of the failure detector.

First, we describe the environment in which the experiméatge been conducted. Second, we study
the effect of several parameters on the behavior of#Hailure detector. Third, we compare the results
obtained using the failure detector with that of Chen and Bertier (SgeD).

A. Environment

Our experiments involved two computers, with one locateghipan and the other located in Switzerland.
The two computers were communicating through a normal dotginental Internet connection. One
machine was running program sending heartbeats (thusgaldtm processp) while the other one was
recording the arrival times of each heartbeat (thus acikeprocess;). Neither machine failed during
the experiment.

1) Hardware/software/network:

o Computerp (monitored; Switzerland)The sending host was located in Switzerland, at the Swiss
Federal Institute of Technology in Lausanne (EPFL). Thehmmecwas equipped with a Pentium IlI
processor at 766 MHz and 128 MB of memory. The operating systas Red Hat Linux 7.2 (with
Linux kernel 2.4.9).

« Computerqg (monitoring; Japan):The receiving host was located in Japan, at the Japan Addance
Institute of Science and Technology (JAIST). The machins guipped with a Pentium Il processor
at 1 GHz and 512 MB of memory. The running operating system Re Hat Linux 9 (with Linux
kernel 2.4.20).

All messages were transmitted using the UDP/IP protocderéstingly, using thd r acer out e
command has shown us that most of the traffic was actuallyedothrough the United States, rather
than directly between Asia and Europe.

3The formula is simplified assuming that crashes are rare events.
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In addition, we have monitored the CPU load average on the t@achmes during the whole period
of the experiments. We observed that the load was nearlytaaingiroughout, and well below the full
capacity of the machines.

2) Heartbeat sampling:The experiment started on April 2, 2004 at 17:56 UTC, and fedsbxactly
one full week later. During the one week that the experimasteld, heartbeat messages were generated at a
target rate of one heartbeat every 100 ms. The average geradéactually measured was of one heartbeat
every103.5 ms (standard deviatio:19 ms; min.:101.7 ms; max.:234.3 ms). In total,5, 845, 712 heartbeat
messages were sent among which onlg22, 521 were received (about.4 % of message loss).

We observed that message losses tended to occur in buestentgpest of which wag093 heartbeats
long (i.e., it lasted for about 2 minutes). We obsergéd different bursts of consecutively lost messages.
The distribution of burst lengths is represented on Figur8éyond 25, there is a flat tail of bursts
that are not depicted on the figure. After 25, the next bur8dideartbeats long, and the lengths of the
five longest bursts were respectively 495, 503, 621, 819,198 heartbeats.

The mean of inter-arrival times of received heartbeats Wés9 ms with a standard deviation of
about104.1 ms. The distribution of the inter-arrival times is represenon Figure 6.

A different view of inter-arrival times is given in Figure The figure relates arrival intervals (vertical
axis) with the time when the second heartbeat of the inteaaxraled (horizontal), over the whole duration
of the experiment. Very long intervals are not depicted. Ting (thick) line of points at the bottom
of the graph represents heartbeat that arrived normalliginviatbout100 ms. The second (thinner) line
represents intervals obtained after a single heartbeatosgsand so on with the other lines above it. At
that frequency, losing a single heartbeat seems to be a heitmation. There is a period (April 6 and 7)
where more messages were lost.

3) Round-trip times:During the experiment, we have also measured the rounditnig (RTT), albeit
at a low rate. We have measured an average RTZ88f3ms with a standard deviation @7.3ms, a
minimum of 270.2 ms, and a maximum of17.8 ms.

4) Experiment: To conduct the experiments, we have recorded heartbeatngeadd arrival times
using the experimental setup described above. We have heesehding times to compute the statistics
mentioned above. Then, we replayed the receiving timesrdedofor each different failure detector
implementation and every different value of the paramefess result, the failure detectors were compared
based orexactlythe same scenarios, thus resulting in a fair comparison.
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All three failure detectors considered in these experisegly on a window of past samples to compute
their estimations. Unless stated otherwise, the failutealers were set using the same window size of
1,000 samples. As the behavior of the failure detectors is stablg after the window is full, we have
excluded from the analysis all data obtained during the warperiod—i.e., the period before the window
is full.

B. Experiment 1: average mistake rate

In the first experiment, we have measured the average mistda&e\,, obtained with they failure
detector. In particular, we have measured the evolutiomefmistake rate when the threshdid used to
trigger suspicions, increases.

Figure 8 shows the results obtained when plotting the nestake on a logarithmic scale. The figure
shows a clear improvement in the mistake rate when the tbidghcreases fron® = 0.5 to & = 2. This
improvement is due to the fact that most late heartbeat mpessare caught by a threshold of two or more.
The second significant improvement comes wideg [8;12]. This corresponds to the large number of
individually lost heartbeat messages (i.e., loss burstergjth 1). As those messages no longer contribute
to generating suspicions, the mistake rate drops signtfican

C. Experiment 2: average detection time

In the second experiment, we have measured the averagdiaettme obtained with the» failure
detector, and how it evolves when changing the threskold

We have computed aestimationfor the average detection tim&, as follows. Assuming that a crash
would occur exactly after successfully sending a heartbaat measure the time elapsed until the failure
detector reports a suspicion. With thefailure detector, we consider the threshdddand reverse the
computation ofp to obtain the equivalent timeout. We compute this equidat@meout each time a new
heartbeat is received and take the mean valyg;. We estimated the mean propagation tickg based

“This is a worst case situation because any crash that would occur latesefiore sending the next heartbeat) would be detected at the
same time, and any crash that would occur earlier would actually préveriast heartbeat from being sent. Either case would result in a
shorter detection time.
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on our measurements of the round-trip time. Then, we havmaigd the average (worst-case) detection
time simply as follows.
TD ~ Atr + Ato,@ (5)

Figure 9 depicts the evolution of the detection time as thepision thresholdb increases. The curve
shows a sharp increase in the average detection time fahiblice values beyond0 or 11.

D. Experiment 3: effect of window size

The third experiment measures the effect of the window sizethe mistake rate of the-failure
detector. We have set the window size from very small (20 $ashpo very large 10,000 samples) and
measured the accuracy obtained by the failure detector wireduring the full week of the experiment.
We have repeated the experiment for three different valééseathresholdd, namely® = 1, & = 3, and
® = 5. Figure 10 shows the results, with both axes expressed ogaaitlomic scale.

The experiment confirms that the mistake rate of ¢gh&ailure detector improves as the window size
increases (see Fig. 10). The curve seems to flatten slightliafge values of the window size, suggesting
that increasing it further yields only little improvemeAtsecond observation is that thefailure detector
seems to be affected equally by the window size, regardieseahreshold.

E. Experiment 4. comparison with Chen-FD and Bertier-FD

In this fourth experiment, we compare thefailure detector with two well-known adaptive failure
detectors, namely the failure detector of Chen et al. [10] @vadl of Bertier et al. [9]. The goal of the
comparison is to show that the additional flexibility offérBy the failure detector does not incur any
significant performance cost.

The three failure detectors do not share any common tuningnpeter, which makes comparing them
difficult. To overcome this problem, we measured the behavi@ach of the three failure detectors using
several values of their respective tuning parameters. \We tien plotted the combinations of QoS metrics
(average mistake rate, average worst-case detection ¢int@ned with each of the three failure detectors.

The tuning parameter for the failure detector was the threshofdl (values are also represented in
Fig. 8 and 9). The tuning parameter for Chen’s failure detestas the safety margin; this is simply
an additional period of time that is added to the estimateterarrival of the next heartbeat. Unlike the
other two failure detectors, Bertier's has no tuning parameior this reason, its behavior is plotted as a
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single point on the graph. Finally, as already mentioned,wimdow size for all three failure detectors
was set to the same value bf000 samples.

The results of the experiment are depicted on Figure 11. Engcal axis, representing the mistake
rate, is expressed on a logarithmic scale. The horizonial eepresenting the estimated average detection
time, is on a linear scale. Best values are located towardotherlleft corner because this means that the
failure detector provides a short detection time while kegm@m low mistake rate.

The results show clearly that the failure detector does not incur any significant performaogst.
When compared with Chen'’s failure detector, both failure ctets follow the same general tendency. In
our experiment, the failure detector behaves a little better in the aggressivge of failure detection,
whereas Chen’s failure detector behaves a little betteranctinservative range.

Quite interestingly, Bertier’s failure detector did not fsem very well in our experiments. By looking
at the trace files more closely, we observed that this faitlegector was more sensitive than the other
two (1) to message losses, and (2) to large fluctuations imebeiving time of heartbeats. It is however
important to note that, according to their authors [9], Bxlidi failure detector was primarily designed
to be used ovelocal area networks (LANS), that is, environments wherein message seldom lost. In
contrast, these experiments were done over a wide-arearetw

Putting too much emphasis on the difference between Chenpanduld not be reasonable as other
environments might yield to other conclusions. It is howesafe to conclude that the flexibility af
does not come with any drop in performance, especially wisad wver wide-area networks.

VI. RELATED WORK
A. Other adaptive failure detectors

There exists other adaptive failure detectors in addittoGhen’s and Bertier's described in Section I1-D.

Fetzer et al. [15] have proposed a protocol using a simplptatian mechanism. It adjusts the timeout by
using the maximum arrival interval of heartbeat messages.protocol supposes a partially synchronous
system model [17], wherein an unknown bound on message slelsntually exists. The authors show
that their algorithm belongs to the clag$® in this model. The proposed algorithm adapts only very
slowly as this is not a focus of that paper.



Sotoma et al. [4] propose an implementation of an adaptiveréadetector with CORBA. Their
algorithm computes the timeout based on the average timarforal intervals of heartbeat messages,
and some ratio between arrival intervals.

B. Flexible failure detectors

As far as we know, there exists only a few failure detector lementations that allow non-trivial
tailoring by applications, let alone the requirementse¥eralapplications running simultaneously.

Cosquer et al. [18] propose configurable failure “suspettatsose parameters can be fine tuned by
a distributed application. The suspectors can be tunedtbirdut they are used only through a group
membership service and view synchronous communicatioarelts a wide range of parameters that can
be set, but the proposed solution remains unable to sinedtesly support several applications with very
different requirements.

The failure detector implementation proposed by Chen etl@l ¢an also be tuned to application re-
quirements. However, the parameters must be dimenstaéidally, and can only match the requirements
of a singleapplication. It can be said that they provide a “hardwiredyjigke of accuracy which must be
shared by all applications.

The two timeout approach [7], [19] can also be seen as a fiegt &tward adapting to application
requirements, but the solution lacks generality. The tweebtut approach was proposed and discussed in
relation with group membership and consensus. In shortag proposed to implement failure detection
based on two different timeout values; an aggressive andseceative one. The approach is well suited
for building consensus-based group communication systéfosever, the protocol was not rendered
adaptive to changing network conditions (although this Mche feasible) and, more importantly, still
lacks the flexibility required by a generic service (it sugpanly two applications).

C. Relation with group membership

Group membership is a popular approach to ensuring faldtaoce in distributed applications. In
short, a group membership keeps track of what process bekontipe distributed computation and what
process does not. In particular, a group membership usnabys to exclude processes that have crashed
or partitioned away. For more information on the subject, refer to the excellent survey of Chockler
et al. [20]. A group membership can also be seen as a highfeltee detection mechanism that provides
consistent information about suspicions and failures [8].

In a recent position paper, Friedman [21] proposed to inyat& the notion of a fuzzy group membership
as an interesting research direction. The idea is that eaahb®r of the group is associated with a fuzziness
level instead of binary information (i.e., member or not nbem). Although Friedman does not actually
describe an implementation, we believe that a fuzzy groumbeeship could be built based on accrual
failure detectors.

Similarly, accrual failure detectors could also be usetuhdow-level building block for implementing
a partitionable group membership, such as Moshe [22]. Sugbwp membership must indeed distinguish
between message losses, network partitions, and actuegégzarashes. For instance, Keidar et al. [22]
decide that a network partition has occurred after more thege consecutive messages have been lost.
Typically, this could be done by using accrual failure deie@and setting an appropriate threshold.

VIlI. CONCLUSION

We have presented the concept and the implementation opttadure detector, an instance of the
more general abstraction of accrual failure detectors. \&ie hanalyzed the behavior of the failure
detector over a transcontinental Internet link, based arlyé million heartbeat messages. Finally, we
have compared the behavior of our failure detector with tmpartant adaptive failure detectors, namely,
Chen’s [10] and Bertier's [9] failure detectors.



By design,p-failure detectors can adapt equally well to changing ndtveonditions, and the require-
ments of any number of concurrently running applications.fé& as we know, this is currently the only
failure detector that addresses both problems and protheeftexibility required for implementing a truly
generic failure detection service. In particular, the tvioeo failure detectors studied in this paper do not
address both problenis.

In addition to interesting observations about transcemtial network communication, our experimental
results show that our failure detector behave reasonablyifygarameters are well-tuned. In particular,
we see that the impact of the window size is significant. Oungarisons with the other failure detectors
show that thep-failure detector does not induce any significant overheagerformance are similar.
Nevertheless, we believe that there is still room for improent. In particular, we are investigating
techniques and mechanisms to (1) improve the estimatidmeadistribution when computing, (2) reduce
the use of memory resources, and (3) better cope with medeages for highly conservative failure
detection.

Concerning accrual failure detectors, we are currently wgrlon a more thorough formalization of
the abstraction. Some of those results have been briefly swized in this paper, but will be further
developed in the future.
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