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Abstract

Detecting failures is a fundamental issue for fault-tolerance in distributed systems. Recently, many people have
come to realize that failure detection ought to be provided as some form of generic service, similar to IP address
lookup or time synchronization. However, this has not been successful so far. One of the reasons is the difficulty
to satisfy several application requirements simultaneously when using classical failure detectors.

We present a novel abstraction, called accrual failure detectors, that emphasizes flexibility and expressiveness
and can serve as a basic building block to implementing failure detectors in distributed systems. Instead of providing
information of a boolean nature (trust vs. suspect), accrual failure detectors output a suspicion level on a continuous
scale. The principal merit of this approach is that it favorsa nearly complete decoupling between application
requirements and the monitoring of the environment.

In this paper, we describe an implementation of such an accrual failure detector, that we call theϕ failure
detector. The particularity of theϕ failure detector is that it dynamically adjusts to current network conditions
the scale on which the suspicion level is expressed. We analyzed the behavior of ourϕ failure detector over an
intercontinental communication link during several days.Our experimental results show that ourϕ failure detector
performs equally well as other known adaptive failure detection mechanisms, with an improved flexibility.

I. I NTRODUCTION

It is well-known that failure detection constitutes a fundamental building block for ensuring fault toler-
ance in distributed systems. For this reason, many people have been advocating that failure detection should
be provided as a service [1]–[5], similar to IP address lookup (DNS) or time synchronization (e.g., NTP).
Unfortunately, in spite of important technical breakthroughs, this view has met little success so far. We
believe that one of the main reasons is that the conventionalboolean interaction (i.e., trust vs. suspect)
makes it difficult to meet the requirements of several distributed applications running simultaneously. For
this reason, we advocate a different abstraction that helpsdecoupling application requirements from issues
related to the underlying system.

It is well-known that there exists an inherent tradeoff between (1)conservativefailure detection (i.e.,
reducing the risk of wrongly suspecting a running process),and (2) aggressivefailure detection (i.e.,
quickly detecting the occurrence of a real crash). There exists a continuum of valid choices between these
two extremes, and what defines an appropriate choice is strongly related to application requirements.

One of the major obstacles to building a failure detection service is that simultaneously running
distributed applications with different quality-of-service requirements must be able to tune the service
to meet their own needs without interfering with each other.Furthermore, some classes of distributed
applications require the use of different qualities of service of failure detection to trigger different reactions
(e.g., [6]–[8]). For instance, an application can take precautionary measures when the confidence in a
suspicion reaches a given level, and then take more drastic actions once the confidence raises above a
second (much higher) level.

Accrual failure detectors:Failure detectors are traditionally based on a boolean interaction model
wherein processes can only either trust or suspect the processes that they are monitoring. In contrast, we
propose a novel abstraction, called accrual failure detector, whereby a failure monitor service outputs a
value on acontinuous scalerather than information of a boolean nature. Roughly speaking, this value



captures the degree of confidence that a corresponding monitored process has crashed. If the process
actually crashes, the value is guaranteed toaccrueover time and tend toward infinity, hence the name.
It is then left to application processes to set an appropriate suspicion threshold according to their own
quality-of-service requirements. A low threshold is proneto generate many wrong suspicions but ensures
a quick detection in the event of a real crash. Conversely, a high threshold generates fewer mistakes but
needs more time to detect actual crashes.

Example: Let us now illustrate the advantage of this approach with a simple example. Consider a
distributed application in which one of the processes is designated as a master while all other processes
play the role of workers. The master holds a list of jobs that needs to be computed and maintains a list of
available worker processes. As long as jobs remain in its list, the master sends jobs to idle workers and
collects the results after they have been computed. Assume now that some of the workers might crash
(for simplicity, we assume that the master never crashes). Let some worker processpw crash during the
execution; the master must be able to detect thatpw has crashed and take appropriate actions, otherwise
the system might block forever. With accrual failure detectors, this could be realized as follows. When
the confidence level reaches some low threshold, the master simply flags the worker processpw and
temporarily stops sending new jobs topw. Then, when reaching a moderate threshold, the master cancels
all unfinished computations that were running onpw and resubmit them to some other worker processes.
Finally, when reaching a high threshold, the confidence thatpw has crashed is high, so the master removes
pw from its list of available workers and releases all corresponding resources. Using conventional failure
detectors to implement such a simple behavior would be quitea challenge.

Contribution: In this paper, we present the abstraction of accrual failuredetectors and describe an
adaptive implementation called theϕ failure detector. Briefly speaking, theϕ failure detector works as
follows. The protocol samples the arrival time of heartbeats and maintains a sliding window of the most
recent samples. This window is used to estimate the arrival time of the next heartbeat, similarly to conven-
tional adaptive failure detectors [9], [10]. The distribution of past samples is used as an approximation for
the probabilistic distribution of future heartbeat messages. With this information, it is possible to compute
a valueϕ with a scale that changes dynamically to match recent network conditions.

We have evaluated our failure detection scheme on a transcontinental link between Japan and Switzer-
land. Heartbeat messages were sent using the user datagram protocol (UDP) at a rate of about ten per
second. The experiment ran uninterruptedly for a period of one week, gathering a total of nearly 6 million
samples. Using these samples, we have analyzed the behaviorof the ϕ failure detector, and compared it
with traditional adaptive failure detectors [9], [10]. By providing exactly the same input to every failure
detector, we could ensure the fairness of the comparison. The results show that the enhanced flexibility
provided by our approach does not induce any significant overhead.

Structure: The rest of the paper is organized as follows. Section II recalls important concepts and
definitions regarding failure detectors. Section III describes the abstraction of accrual failure detectors.
Section IV presents an implementation of accrual failure detectors called theϕ failure detector. The
behavior of theϕ failure detector is evaluated in Section V, where it is compared with other existing
failure detector implementations on a wide-area network. Section VI discusses other related work. Finally,
Section VII concludes the paper.

II. FAILURE DETECTORS: BASIC CONCEPTS& IMPLEMENTATIONS

This section briefly reviews important results concerning failure detection. We first outline the basic
concepts, describe important metrics, and discuss basic aspects of their implementations. At the end of
the section, we describe two prior implementations of adaptive failure detectors that we later use as a
reference to compare with ourϕ failure detector.



A. Unreliable failure detectors

Being able to detect the crash of other processes is a fundamental issue in distributed systems. In
particular, several distributed agreement problems, suchas Consensus, cannot be solved deterministically
in asynchronous1 systems if even a single process might crash [11]. The impossibility is based on the fact
that, in such a system, a crashed process cannot be distinguished from a very slow one.

The impossibility result mentioned above no longer holds ifthe system is augmented with some
unreliable failure detector oracle [12]. An unreliable failure detector is one that can make mistakes, to a
certain degree. As an example, we present here the properties of a failure detector of class♦P (eventually
perfect), which is sufficient to solve the Consensus problem:

Property 1 (Strong completeness):There is a time after which every process that crashes is permanently
suspected by all correct processes.

Property 2 (Eventual strong accuracy):There is a time after which correct processes are not suspected
by any correct process.

B. Quality of service of failure detectors

Chen et al. [10] propose a set of metrics to evaluate the quality of service (QoS) of failure detectors. For
simplicity and without loss of generality, they consider a simple system as follows. The system consist of
only two processes calledp andq, where processq monitors processp. Processp can possibly be subject
to crash failures, in which case the crash is permanent. In the sequel, we consider the same system, and
use the following subset of Chen’s metrics.

Definition 1 (Detection timeTD): The detection time is the time that elapses since the crash ofp and
until q begins to suspectp permanently.

Definition 2 (Average mistake rateλM ): This measures the rate at which a failure detector generates
wrong suspicions.

Notice that the first definition relates to the completeness whereas the other one relates to the accuracy
of the failure detector.

C. Heartbeat failure detectors

In this section, we present a brief overview of heartbeat-based implementations of failure detectors.
Assume that processes have also access to some local physical clock giving them the ability to measure
time. These clocks may or may not be synchronized.

Using heartbeat messages is a common approach to implementing failure detectors. It works as follows
(see Fig. 1): processp—i.e., the monitored process—periodically sends a heartbeat message to processq,
informing q thatp is still alive. The period is called the heartbeat interval∆i. Processq suspects processp
if it fails to receive any heartbeat message fromp for a period of time determined by a timeout∆to, with
∆to ≥ ∆i. A third value of importance is the network transmission delay of messages. For convenience,
we denote by∆tr the average transmission time experienced by messages.

In the conventional implementation of heartbeat-based failure detection protocols, the timeout∆to is
fixed as a constant value. Upon receiving a heartbeat, process q waits for the next heartbeat for at most
∆to units of time, after which it begins to suspect processp if no new heartbeat has been received.

Obviously, the choice of a timeout value must be larger than∆i, and is dictated by the following
tradeoff. If the timeout (∆to) is short, crashes are detected quickly but the likeliness of wrong suspicions
is high. Conversely, if the timeout is long, wrong suspicionsbecome less frequent, but this comes at the
expense of detection time.

An alternative implementation of heartbeat failure detectors sets a timeout based on the transmission
time of the heartbeat. The advantage of this approach is thatthe maximal detection time is bounded, but

1An asynchronous distributed system is one in which there are no bounds on communication delays and on the speed of processes.



Fig. 1. Heartbeat failure detection and its main parameters.

its drawback is that it relies on clocks with negligible drift2 and a shared knowledge of the heartbeat
interval ∆i. This last point can become a problem in practice, when the regularity of the sending of
heartbeats cannot be ensured and a short interval makes the timing inaccuracies due to operating system
scheduling take more importance (i.e., the actual intervaldiffers from the target one as a result).

Each of the two approaches has its own merits that depend on the context, so we believe that there is
no clearcut answer to the question of choosing one over the other.

D. Adaptive failure detectors

The goal of adaptive failure detectors is to adapt to changing network conditions. Most adaptive failure
detectors presented in the literature are based on a heartbeat strategy (although nothing seems to preclude
a query-response interaction style, for instance). The principal difference with using a fixed heartbeat
strategy is that the timeout is modified dynamically according to network conditions.

1) Chen-FD: Chen et al. [10] propose an approach based on a probabilistic analysis of network traffic.
The protocol uses arrival times sampled in the recent past tocompute an estimation of the arrival time of the
next heartbeat. The timeout∆to is set according to this estimation and a constant safety margin α is added.
The estimation of the next heartbeat arrival time is recomputed after each new heartbeat arrival. The safety
margin is computed once, based on quality-of-service requirements. The authors propose two versions of
their protocol; one that relies on synchronized clocks, anda second one that uses unsynchronized clocks
with negligible drift. We have done our comparisons based onthe second version of their protocol.

2) Bertier-FD: Bertier et al. [9] propose an adaptive failure detector basedon the same approach,
but using a different estimation function. Their estimation combines Chen’s estimation with a dynamic
estimation based on Jacobson’s estimation of the round-trip time [13]. The resulting failure detector
provides a shorter detection time, but generates more wrongsuspicions than Chen’s estimation, according
to their measurements on a LAN.

3) Note on setting the heartbeat period:It is clear that the heartbeat period∆i is a factor that contributes
to the detection time. However, in contrast to a common belief, Müller [14] shows that, on several different
networks,∆i is not much determined by quality-of-service requirements, but rather by the characteristics
of the underlying system.

An informal argument is as follows. Roughly speaking, the detection time is equally determined by
three parameters:∆i, ∆tr , and some additional marginα (with ∆to ≈ ∆i + α). ∆tr is caused by the
network and cannot really be tuned.

• On the one hand, if∆i is a lot smaller than∆tr , then reducing it will have little effect on reducing
the detection time. Indeed, the detection time cannot possibly be shorter than the transmission time.
In fact, reducing∆i further would generate both a larger amount of traffic on the network and a
higher activity in the network stacks. This could in turn increase∆tr .

2A straightforward implementation requires synchronized clocks. Chen et al. [10] show how to do it with unsynchronized clocks, but this
still requires a negligible drift between the clocks.



Fig. 2. Structure of traditional failure detectors. Monitoring and
interpretation are combined. Interactions with applications and pro-
tocols is boolean.

Fig. 3. Structure of accrual failure detectors. Monitoring and
interpretation are decoupled. Applications interpret a common value
based on their own interpretation.

• On the other hand, if∆i is a lot larger than∆tr , then∆i will almost entirely determine the detection
time. Increasing it further will increase the detection time accordingly, but it will have nearly no
effect in reducing the already low load on the network.

Hence, we can conclude that any reasonable value of∆i should be roughly equal to the average trans-
mission time∆tr . The only exception that we could see is when an upper limit isset on the acceptable
usage of network bandwidth for control messages.

Although the above argument is rather informal, it suggeststhat there exists, with every network, some
nominal range for the parameter∆i with little or no impact on the accuracy of the failure detector. In other
words, we can consider that the parameter∆i is given by the underlying system rather than computed
from application requirements.

III. A CCRUAL FAILURE DETECTORS

The principle of accrual failure detectors is simple. Instead of outputting information of a boolean
nature, accrual failure detectors output suspicion information on a continuous scale. Roughly speaking,
the higher the value, the higher the chance that the monitored process has crashed.

In this section, we first describe the use of accrual failure detectors from an architectural perspective,
and put this in contrast with conventional failure detectors. Then, we give a more precise definition of
accrual failure detectors. Finally, we conclude the section by showing the relation between accrual failure
detectors and conventional ones. In particular, we show howan accrual failure detector can be used to
implement a failure detector of class♦P.

A. Architecture overview

Conceptually, the implementation of failure detectors on the receiving side can be decomposed into
three basic parts as follows.

1) Monitoring. The failure detector gathers information from other processes, usually through the
network, such as heartbeat arrivals or query-response delays.

2) Interpretation. Monitoring information is used and interpreted, for instance to decide that a process
should be suspected.

3) Action. Actions are executed as a response to triggered suspicions. This is normally done within
applications.

The main difference between traditional failure detectorsand accrual failure detectors is which component
of the system does what part of failure detection.

In traditional timeout-based implementations of failure detectors, the monitoring and interpretation
parts are combined within the failure detector (see Fig. 2).The output of the failure detector is of boolean
nature;trust or suspect. An elapsing timeout is equated to suspecting the monitoredprocess, that is, the



monitoring information is already being interpreted. Applications cannot do any interpretation, and thus
are left with what to do with the suspicion. Unfortunately, suspicion tradeoffs largely depend on the nature
of the triggered action, as well as its cost in terms of performance or resource usage.

In contrast, accrual failure detectors provide a lower-level abstraction that avoids the interpretation of
monitoring information (see Fig. 3). Some value is associated with each process that represents a suspicion
level. This value is then left for the applications to interpret. For instance, by setting an appropriate
threshold, applications can trigger suspicions and perform appropriate actions. Alternatively, applications
can directly use the value output by the accrual failure detector as a parameter to their actions. Considering
the example of master/worker described in the introduction, the master could decide to allocate the most
urgent jobs only to worker processes with a low suspicion level.

B. Definition

An accrual failure detector is defined as a failure detector that outputs a value associated with each of
the monitored processes, instead of a set of suspected processes. In the simplified model considered in
this paper (two processesp andq, whereq monitorsp), the output of the failure detector ofq over time
can be represented by the following function (“suspicion level of p”).

susp levelp(t) ≥ 0 (1)

The values output by an accrual failure detector module define the functionsusp levelp and must satisfy
the properties below. The first two properties specify what the output ofsusp levelp(t) should be if the
processp is faulty, whereas the remaining two properties specify what the output should be ifp is correct.

Property 3 (Asymptotic completeness):If processp is faulty, the suspicion levelsusp levelp(t) tends
to infinity as time goes to infinity.

Property 4 (Eventual monotony):If processp is faulty, there is a time after whichsusp levelp(t) is
monotonic increasing.

Property 5 (Upper bound):Processp is correct if and only ifsusp levelp(t) has an upper bound over
an infinite execution.

Property 6 (Reset):If processp is correct, then for any timet0, susp levelp(t) = 0 for some timet ≥ t0.

C. Transformation into conventional failure detection

Given the definitions of accrual failure detectors, it easy to use them to construct existing failure
detectors such as one of class♦P. The algorithm below is similar to one proposed by Fetzer et al. [15].

Consider the following transformation algorithm describedfor the situation where processq monitors
processp. Processq maintains two dynamic thresholdsThigh and Tlow , initialized to the same arbitrary
value greater than0.

• S-transition: Whenever the value ofsusp levelp crosses the upper thresholdThigh upward,q updates
the value ofThigh to Thigh +1, and begins to suspectp (or continues to suspectp if it does so already).

• T-transition: Whenever the value ofsusp levelp crosses the lower thresholdTlow downward,q updates
the value ofTlow to that ofThigh , and stops suspectingp.

It is rather straightforward to prove that the above transformation satisfies the properties of♦P.
Informally, strong completeness is ensured because the thresholdThigh is always finite (consequence of
Prop. 4) and must be eventually crossed (S-transition and Prop. 3). Similarly, eventually strong accuracy
is ensured because, ifp is correct, there is a time after whichThigh is never crossed (S-transition and
Prop. 5), andq does not suspectp (T-transition and Prop. 6).

Now, it is important to stress that the above result does not come in contradiction with the FLP
impossibility of Consensus [11]. Accrual failure detectorsmerely define an abstraction, and are hence
subject to the same restrictions as conventional failure detectors. It is well-known that it is impossible



Fig. 4. Information flow in the proposed implementation of theϕ failure detector, as seen at processq. Heartbeat
arrivals arrive from the network and their arrival time are stored in thesampling window. Past samples are used
to estimate some arrival distribution. The time of last arrivalTlast , the current timetnow and the estimated
distribution are used to compute the current value ofϕ. Applications trigger suspicions based on some threshold
(Φ1 for App. 1 andΦ2 for App. 2), or execute some actions as a function ofϕ (App. 3).

to implement a failure detector of class♦P deterministically in asynchronous systems. Likewise, accrual
failure detectors cannot be implemented deterministically in all possible asynchronous systems. However,
both kinds of failure detectors can be implementedprobabilistically.

IV. I MPLEMENTATION OF THE ϕ ACCRUAL FAILURE DETECTOR

In the previous section, we have presented the generic abstraction of accrual failure detectors. Accrual
failure detectors can be implemented in many different ways. In this section, we present a practical
implementation that we call theϕ failure detector, and that we had outlined in earlier work [16].

A. Meaning of the valueϕ

As mentioned,ϕ failure detector implements the abstraction of an accrual failure detector. The suspicion
level of accrual failure detector is given by a value calledϕ. The basic idea of theϕ failure detector is
to express the value ofϕ on a scale that is dynamically adjusted to reflect current network conditions.

Let Tlast , tnow , andPlater(t) denote respectively: the time when the most recent heartbeat was received
(Tlast ), the current time (tnow ), and the probability that a heartbeat will arrive more thant time units after
the previous one (Plater(t)). Then, the value ofϕ is calculated as follows.

ϕ(tnow)
def
= − log10(Plater(tnow − Tlast)) (2)

Roughly speaking, with the above formula,ϕ takes the following meaning. Given some thresholdΦ,
and assuming that we decide to suspectp when ϕ ≥ Φ = 1, then the likeliness that we will make a
mistake (i.e., the decision will be contradicted in the future by the reception of a late heartbeat) is about
10 %. The likeliness is about1 % with Φ = 2, 0.1 % with Φ = 3, and so on.

B. Calculatingϕ

The method used for estimatingϕ is in fact rather simple. This is done in three phases. First,heartbeat
arrive and their arrival times are stored in a sampling window. Second, these past samples are used to
determine the distribution of inter-arrival times. Third,the distribution is in turn used to compute the
current value ofϕ. The overall mechanism is described in Figure 4.



1) Sampling heartbeat arrivals:The monitored process (p in our model) adds a sequence number to
each heartbeat message. The monitoring process (q in our model) stores heartbeat arrival times into a
sampling window of fixed sizeWS . Whenever a new heartbeat arrives, its arrival time is storedinto the
window, and the data regarding the oldest heartbeat is deleted from the window. Arrival intervals are
easily computed. In addition, to constantly determine the meanµ and the varianceσ2, two other variables
are used to keep track of the sum and sum of squares of all samples in the window.

2) Estimating the distribution and computingϕ: The estimation of the distribution of inter-arrival times
assumes that inter-arrivals follow a normal distribution.The parameter of the distribution are estimated
from the sampling window, by determining the meanµ and the varianceσ2 of the samples. Then, the
probability Plater(t) that a given heartbeat will arrive more thant time units later than the previous
heartbeat is given by the following formula.3

Plater(t) =
1

σ
√

2π

+∞∫

t

e−
(x−µ)2

2σ2 dx (3)

= 1 − F (t) (4)

whereF (t) is the cumulative distribution function of a normal distribution with meanµ and varianceσ2.
Then, the value ofϕ at time tnow is computed by applying Equation 2 described in Section IV-A.

V. EXPERIMENTAL RESULTS

In this section, we study the behavior of theϕ failure detector when used over a wide-area network.
The measurements have been taken in a rather extreme environment (wide area network, short heartbeat
interval) to assess both the robustness and the scope of applicability of the failure detector.

First, we describe the environment in which the experimentshave been conducted. Second, we study
the effect of several parameters on the behavior of theϕ failure detector. Third, we compare the results
obtained using theϕ failure detector with that of Chen and Bertier (see§II-D).

A. Environment

Our experiments involved two computers, with one located inJapan and the other located in Switzerland.
The two computers were communicating through a normal intercontinental Internet connection. One
machine was running program sending heartbeats (thus acting like processp) while the other one was
recording the arrival times of each heartbeat (thus acting like processq). Neither machine failed during
the experiment.

1) Hardware/software/network:
• Computerp (monitored; Switzerland):The sending host was located in Switzerland, at the Swiss

Federal Institute of Technology in Lausanne (EPFL). The machine was equipped with a Pentium III
processor at 766 MHz and 128 MB of memory. The operating system was Red Hat Linux 7.2 (with
Linux kernel 2.4.9).

• Computerq (monitoring; Japan):The receiving host was located in Japan, at the Japan Advanced
Institute of Science and Technology (JAIST). The machine was equipped with a Pentium III processor
at 1 GHz and 512 MB of memory. The running operating system wasRed Hat Linux 9 (with Linux
kernel 2.4.20).

All messages were transmitted using the UDP/IP protocol. Interestingly, using thetraceroute
command has shown us that most of the traffic was actually routed through the United States, rather
than directly between Asia and Europe.

3The formula is simplified assuming that crashes are rare events.
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Fig. 6. Distribution of heartbeat inter-arrival times as measured by
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In addition, we have monitored the CPU load average on the two machines during the whole period
of the experiments. We observed that the load was nearly constant throughout, and well below the full
capacity of the machines.

2) Heartbeat sampling:The experiment started on April 2, 2004 at 17:56 UTC, and finished exactly
one full week later. During the one week that the experiment lasted, heartbeat messages were generated at a
target rate of one heartbeat every 100 ms. The average sending rate actually measured was of one heartbeat
every103.5 ms (standard deviation:0.19 ms; min.:101.7 ms; max.:234.3 ms). In total,5, 845, 712 heartbeat
messages were sent among which only5, 822, 521 were received (about0.4 % of message loss).

We observed that message losses tended to occur in bursts, the longest of which was1093 heartbeats
long (i.e., it lasted for about 2 minutes). We observed814 different bursts of consecutively lost messages.
The distribution of burst lengths is represented on Figure 5. Beyond 25, there is a flat tail of48 bursts
that are not depicted on the figure. After 25, the next burst is34 heartbeats long, and the lengths of the
five longest bursts were respectively 495, 503, 621, 819, and1093 heartbeats.

The mean of inter-arrival times of received heartbeats was103.9 ms with a standard deviation of
about104.1 ms. The distribution of the inter-arrival times is represented on Figure 6.

A different view of inter-arrival times is given in Figure 7.The figure relates arrival intervals (vertical
axis) with the time when the second heartbeat of the intervalarrived (horizontal), over the whole duration
of the experiment. Very long intervals are not depicted. Thefirst (thick) line of points at the bottom
of the graph represents heartbeat that arrived normally within about100 ms. The second (thinner) line
represents intervals obtained after a single heartbeat waslost, and so on with the other lines above it. At
that frequency, losing a single heartbeat seems to be a normal situation. There is a period (April 6 and 7)
where more messages were lost.

3) Round-trip times:During the experiment, we have also measured the round-triptime (RTT), albeit
at a low rate. We have measured an average RTT of283.3 ms with a standard deviation of27.3 ms, a
minimum of 270.2 ms, and a maximum of717.8 ms.

4) Experiment: To conduct the experiments, we have recorded heartbeat sending and arrival times
using the experimental setup described above. We have used the sending times to compute the statistics
mentioned above. Then, we replayed the receiving times recorded for each different failure detector
implementation and every different value of the parameters. As a result, the failure detectors were compared
based onexactlythe same scenarios, thus resulting in a fair comparison.



Apr 3, 2004
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Fig. 7. Arrival intervals and time of occurrence. Each dot represents
a received heartbeat. The horizontal position denotes the time of
arrival. The vertical coordinate denotes the time elapsed since the
reception of the previous heartbeat.

All three failure detectors considered in these experiments rely on a window of past samples to compute
their estimations. Unless stated otherwise, the failure detectors were set using the same window size of
1, 000 samples. As the behavior of the failure detectors is stable only after the window is full, we have
excluded from the analysis all data obtained during the warmup period—i.e., the period before the window
is full.

B. Experiment 1: average mistake rate

In the first experiment, we have measured the average mistakerate λM obtained with theϕ failure
detector. In particular, we have measured the evolution of the mistake rate when the thresholdΦ, used to
trigger suspicions, increases.

Figure 8 shows the results obtained when plotting the mistake rate on a logarithmic scale. The figure
shows a clear improvement in the mistake rate when the threshold increases fromΦ = 0.5 to Φ = 2. This
improvement is due to the fact that most late heartbeat messages are caught by a threshold of two or more.
The second significant improvement comes whenΦ ∈ [8; 12]. This corresponds to the large number of
individually lost heartbeat messages (i.e., loss bursts oflength 1). As those messages no longer contribute
to generating suspicions, the mistake rate drops significantly.

C. Experiment 2: average detection time

In the second experiment, we have measured the average detection time obtained with theϕ failure
detector, and how it evolves when changing the thresholdΦ.

We have computed anestimationfor the average detection timeTD as follows. Assuming that a crash
would occur exactly after successfully sending a heartbeat,4 we measure the time elapsed until the failure
detector reports a suspicion. With theϕ failure detector, we consider the thresholdΦ and reverse the
computation ofϕ to obtain the equivalent timeout. We compute this equivalent timeout each time a new
heartbeat is received and take the mean value∆to,Φ. We estimated the mean propagation time∆tr based

4This is a worst case situation because any crash that would occur later (but before sending the next heartbeat) would be detected at the
same time, and any crash that would occur earlier would actually preventthe last heartbeat from being sent. Either case would result in a
shorter detection time.



0.001

0.01

0.1

0.5

 0  2  4  6  8  10  12  14  16

M
is

ta
ke

 R
at

e 
[1

/s
]

threshold Φ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14  16

D
et

ec
tio

n 
tim

e 
[s

]

threshold Φ

Fig. 8. Exp. 1: average mistake rate as a function of thresholdΦ.
Vertical axis is logarithmic.

Fig. 9. Exp 2: average detection time as a function of thresholdΦ.

on our measurements of the round-trip time. Then, we have estimated the average (worst-case) detection
time simply as follows.

TD ≈ ∆tr + ∆to,Φ (5)

Figure 9 depicts the evolution of the detection time as the suspicion thresholdΦ increases. The curve
shows a sharp increase in the average detection time for threshold values beyond10 or 11.

D. Experiment 3: effect of window size

The third experiment measures the effect of the window size on the mistake rate of theϕ-failure
detector. We have set the window size from very small (20 samples) to very large (10, 000 samples) and
measured the accuracy obtained by the failure detector whenrun during the full week of the experiment.
We have repeated the experiment for three different values of the thresholdΦ, namelyΦ = 1, Φ = 3, and
Φ = 5. Figure 10 shows the results, with both axes expressed on a logarithmic scale.

The experiment confirms that the mistake rate of theϕ failure detector improves as the window size
increases (see Fig. 10). The curve seems to flatten slightly for large values of the window size, suggesting
that increasing it further yields only little improvement.A second observation is that theϕ failure detector
seems to be affected equally by the window size, regardless of the threshold.

E. Experiment 4: comparison with Chen-FD and Bertier-FD

In this fourth experiment, we compare theϕ-failure detector with two well-known adaptive failure
detectors, namely the failure detector of Chen et al. [10] andthat of Bertier et al. [9]. The goal of the
comparison is to show that the additional flexibility offered by theϕ failure detector does not incur any
significant performance cost.

The three failure detectors do not share any common tuning parameter, which makes comparing them
difficult. To overcome this problem, we measured the behavior of each of the three failure detectors using
several values of their respective tuning parameters. We have then plotted the combinations of QoS metrics
(average mistake rate, average worst-case detection time)obtained with each of the three failure detectors.

The tuning parameter for theϕ failure detector was the thresholdΦ (values are also represented in
Fig. 8 and 9). The tuning parameter for Chen’s failure detector was the safety marginα; this is simply
an additional period of time that is added to the estimate forthe arrival of the next heartbeat. Unlike the
other two failure detectors, Bertier’s has no tuning parameter. For this reason, its behavior is plotted as a
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Fig. 11. Exp. 4: comparison of failure detectors. Mistake rate
and detection time obtained with different values of the respective
parameters. Most desirable values are toward the lower left corner.
Vertical axis is logarithmic.

single point on the graph. Finally, as already mentioned, the window size for all three failure detectors
was set to the same value of1, 000 samples.

The results of the experiment are depicted on Figure 11. The vertical axis, representing the mistake
rate, is expressed on a logarithmic scale. The horizontal axis, representing the estimated average detection
time, is on a linear scale. Best values are located toward the lower left corner because this means that the
failure detector provides a short detection time while keeping a low mistake rate.

The results show clearly that theϕ failure detector does not incur any significant performancecost.
When compared with Chen’s failure detector, both failure detectors follow the same general tendency. In
our experiment, theϕ failure detector behaves a little better in the aggressive range of failure detection,
whereas Chen’s failure detector behaves a little better in the conservative range.

Quite interestingly, Bertier’s failure detector did not perform very well in our experiments. By looking
at the trace files more closely, we observed that this failuredetector was more sensitive than the other
two (1) to message losses, and (2) to large fluctuations in thereceiving time of heartbeats. It is however
important to note that, according to their authors [9], Bertier’s failure detector was primarily designed
to be used overlocal area networks (LANs), that is, environments wherein messages are seldom lost. In
contrast, these experiments were done over a wide-area network.

Putting too much emphasis on the difference between Chen andϕ would not be reasonable as other
environments might yield to other conclusions. It is however safe to conclude that the flexibility ofϕ
does not come with any drop in performance, especially when used over wide-area networks.

VI. RELATED WORK

A. Other adaptive failure detectors

There exists other adaptive failure detectors in addition to Chen’s and Bertier’s described in Section II-D.
Fetzer et al. [15] have proposed a protocol using a simple adaptation mechanism. It adjusts the timeout by

using the maximum arrival interval of heartbeat messages. The protocol supposes a partially synchronous
system model [17], wherein an unknown bound on message delays eventually exists. The authors show
that their algorithm belongs to the class♦P in this model. The proposed algorithm adapts only very
slowly as this is not a focus of that paper.



Sotoma et al. [4] propose an implementation of an adaptive failure detector with CORBA. Their
algorithm computes the timeout based on the average time forarrival intervals of heartbeat messages,
and some ratio between arrival intervals.

B. Flexible failure detectors

As far as we know, there exists only a few failure detector implementations that allow non-trivial
tailoring by applications, let alone the requirements ofseveralapplications running simultaneously.

Cosquer et al. [18] propose configurable failure “suspectors” whose parameters can be fine tuned by
a distributed application. The suspectors can be tuned directly, but they are used only through a group
membership service and view synchronous communication. There is a wide range of parameters that can
be set, but the proposed solution remains unable to simultaneously support several applications with very
different requirements.

The failure detector implementation proposed by Chen et al. [10] can also be tuned to application re-
quirements. However, the parameters must be dimensionedstatically, and can only match the requirements
of a singleapplication. It can be said that they provide a “hardwired” degree of accuracy which must be
shared by all applications.

The two timeout approach [7], [19] can also be seen as a first step toward adapting to application
requirements, but the solution lacks generality. The two timeout approach was proposed and discussed in
relation with group membership and consensus. In short, it was proposed to implement failure detection
based on two different timeout values; an aggressive and a conservative one. The approach is well suited
for building consensus-based group communication systems. However, the protocol was not rendered
adaptive to changing network conditions (although this would be feasible) and, more importantly, still
lacks the flexibility required by a generic service (it supports only two applications).

C. Relation with group membership

Group membership is a popular approach to ensuring fault-tolerance in distributed applications. In
short, a group membership keeps track of what process belongs to the distributed computation and what
process does not. In particular, a group membership usuallyneeds to exclude processes that have crashed
or partitioned away. For more information on the subject, werefer to the excellent survey of Chockler
et al. [20]. A group membership can also be seen as a high-level failure detection mechanism that provides
consistent information about suspicions and failures [8].

In a recent position paper, Friedman [21] proposed to investigate the notion of a fuzzy group membership
as an interesting research direction. The idea is that each member of the group is associated with a fuzziness
level instead of binary information (i.e., member or not member). Although Friedman does not actually
describe an implementation, we believe that a fuzzy group membership could be built based on accrual
failure detectors.

Similarly, accrual failure detectors could also be useful as a low-level building block for implementing
a partitionable group membership, such as Moshe [22]. Such agroup membership must indeed distinguish
between message losses, network partitions, and actual process crashes. For instance, Keidar et al. [22]
decide that a network partition has occurred after more thanthree consecutive messages have been lost.
Typically, this could be done by using accrual failure detector and setting an appropriate threshold.

VII. C ONCLUSION

We have presented the concept and the implementation of theϕ-failure detector, an instance of the
more general abstraction of accrual failure detectors. We have analyzed the behavior of theϕ failure
detector over a transcontinental Internet link, based on nearly 6 million heartbeat messages. Finally, we
have compared the behavior of our failure detector with two important adaptive failure detectors, namely,
Chen’s [10] and Bertier’s [9] failure detectors.



By design,ϕ-failure detectors can adapt equally well to changing network conditions, and the require-
ments of any number of concurrently running applications. As far as we know, this is currently the only
failure detector that addresses both problems and providesthe flexibility required for implementing a truly
generic failure detection service. In particular, the two other failure detectors studied in this paper do not
address both problems.5

In addition to interesting observations about transcontinental network communication, our experimental
results show that our failure detector behave reasonably well if parameters are well-tuned. In particular,
we see that the impact of the window size is significant. Our comparisons with the other failure detectors
show that theϕ-failure detector does not induce any significant overhead as performance are similar.
Nevertheless, we believe that there is still room for improvement. In particular, we are investigating
techniques and mechanisms to (1) improve the estimation of the distribution when computingϕ, (2) reduce
the use of memory resources, and (3) better cope with messagelosses for highly conservative failure
detection.

Concerning accrual failure detectors, we are currently working on a more thorough formalization of
the abstraction. Some of those results have been briefly summarized in this paper, but will be further
developed in the future.
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