Overview

Motivation:
Why study fault-tolerant distributed algorithms?
Where are they used?

Formalizing distributed algorithms
Basic abstractions: processes and channels
The software stack

How should we study fault-tolerant distributed algorithms?
Specifications: safety and liveness
Assumptions about processes, channels, and their failures
Example: building perfect communication links
Assumptions about timing
Depicting algorithm runs

Distributed algorithms HOWTO (summary)

62

Timing Assumptions

Timing assumptions relate to

different processing speeds (process asynchrony) of
processes

different speeds of messages (channel asynchrony)
Three basic types of systems:

Asynchronous system

Synchronous system

Partially synchronous system

63

64

Timing assumptions

« Synchronous:

* Processing: the time it takes for a process to execute a
step is bounded and known

« Delays: there is a known upper bound limit on the time
it takes for a message to be received

« Clocks: the drift between a local clock and the global
real time clock is bounded and known

- Asynchronous: no assumption

- Eventually Synchronous: the timing assumptions
hold eventually

65

Synchronous System

* While one process takes one step, another process
can take at most a bounded number of steps

Fune Lthoter hoo 8legs

= {
~ N

| [

9 |
I | | | I [| O I |
9 |t l Y I R Y A
\/NV J

\ouuded wum S of S\&(’S

Asynchrony

While one process takes one step, another process
can take any unbounded (but finite) number of steps

hwee Sduwtr dwoo Skgs

.-, S0y £ulle womber of Sk().\-..
| g
, »

66

67

Partial Synchrony

« Eventually the system will be synchronous
e Timing bounds hold eventually (but you never know

when)
3

-'ﬂ.-
AsGudnw &y el oy

I Glbal slbilgahon hiaee

(VwVAr\owm to Al
O(l?“']"ﬁ 1a)

Timing Assumptions

Timing assumptions are often cumbersome to
handle

Better abstraction: failure detector

Failure detector encapsulated timing assumptions
Why failure detector?
Timeouts are usually used for detecting failures

68

Failure detection

A failure detector is a distributed oracle that
provides processes with suspicions about crashed
processes

It is implemented using (i.e., it encapsulates) timing
assumptions

According to the timing assumptions, the suspicions
can be accurate or not

69

Perfect failure detector

Indication event: <crash, p>
Used to notify that process p has crashed

Properties:

PFD1: Eventually every process that crashes is
permanently detected by every correct process (strong
completeness).

PFD2 : No process is detected by any process before it
crashes (strong accuracy).

70

71

Failure detection

* Implementation:

* (1) Processes periodically exchange heartbeat
messages

* (2) A process sets a timeout based on worst case
round trip of a message exchange

* (3) A process suspects another process if it timeouts
that process

* (4) A process that delivers a message from a
suspected process revises its suspicion and increases
its time-out

Formal Algorithm

upon <init> do
timeout[1..n] = d
initialize timer for every process g using timeout[q]
suspected = { }

periodically do

for every process q do
 send <heartbeat, p>to q

upon <timer expires for g> do

suspected := suspected U {q}

initialize timer for process g using timeout[q]
upon <heartbeat, g> do

iIf g in suspected then
« suspected := suspected \ {q}
« timeout[q] := timeout[q] + 1
initialize timer for process g using timeout[q]

72

73

Implementation

?
wes dee WaerWiecdy

LA

DSy — {\ a\ —
J \
®b L ~ \
et '

v

v

e — _
A
E'], «M'VL' ‘ IW
— L} P
"') ,{.\'w Q,)T:I"S
P J > <eeesh, p7

? ;f .“'-45?094’ ¢—¢\

Correctness

« Under what timing assumptions does the failure detector
implementation work?

« synchronous,
« partially synchronous,
e asynchronous?

« Look at different cases (for two processes only):
« (1) Synchronous, where initial timeout is accurate
* (2) Synchronous with too small initial timeout

« (8) Partially synchronous with proper timeout for
synchronous phase

« (4) Partially synchronous with too small timeout for
synchronous phase

« (5) Asynchronous

74

Case 1: Synchronous with 7
proper timeout

UL L
N \ ¥
b

; he ¢
drowg cowm ledewess = 1F p ciatned
F = p Chops Seand Iug beartlesis

= —ul%)vc.\lj INVYIV ot 9 2 Spires

= 4 gespects ?]
' } Coashe
ﬁ_ro—\ts C-CLV('COJ t ? 'S weves S«/fcolr.é L&‘FM t o ghe)

O SSue ' s s p ccd &Jy C,r
= Kumesd b hWas Cxp DMl i - N -
S W vvMme \5;'4—“"") Ry p Ty Hiwtask 0n V~) \~1J1\/x.|o

) 1
~ (S‘p.c\«(b\"\"’] f’jﬂ“““ bopoy L‘W\A) f . ""’b ? ('(f—-)'\-*(‘}

Case 2: Synchronous with 76
improper timeout

N '] i >
q - \ \ \ \i N
—
N S o
Lwowk Yoms oub Homevh gbs lerpd e T
“ oo ely” NIV L PN BN ., Voo
‘ﬁ jos cels f = eNe Q\y
. gr\.),f ¢ 2 erenhally STy ST
~ \;;‘”S Gcvracy 5 Sansfec

\

e W"L&»L atNVves
) TS XV bhuasv)

Case 3: Partially synchronous 7
with proper timeout

cig T 2T gulewy
SO DAN
* ‘_’_;l\ \k—/‘\'——\

\ {)—:«-W'A Su%‘z;k‘f

> SJ.aV:j Coocracy P\«Q\'\
SR vieleled _/Wi\muﬂ e cdskes

7B & W& "MAJ nss<

Case 4: Partially synchronous
with 1 1mproper timeout

qs‘d W’j 57u\rmsw
/\
\ A
) \ 5
R lase. 011 Hawad ey
> Shweny acceray el
|'.| ﬁv\aébl J-oo :

D hwowh Twewand

wealall, Fusvh

q-o?j\:%“"& Wil be {»yw,)L
\$
_DW?«W\- more st

78

79

Case 5: Asynchronous

slow dowin 7 g ‘{\
—e ; N

— 11— — \
A
N } T O -\—,W of q’
= v 4 N s .
? ?)) ovt asSsyme hm‘- valae le
caygi-
=) ¢ Msdx..ka
C) 300 Con Imfn\.zwl— 83‘(“:) Ccm-‘[olc.-\&vww {
shedsognrs |

80

Failure detection

 Perfect:

PFD1 (Strong Completeness): Eventually, every
process that crashes is permanently suspected by
every correct process

- PFD2 (Strong Accuracy): No process is suspected
before it crashes

- Eventually Perfect:

- PFD1

- Eventual Strong Accuracy: Eventually, no correct
process is ever suspected

Summary of Assumptions

assume reliable channels

Processes

crash-
recovery

crash-
stop

no failures

[
|

synchronous Perfect eventually
failure perfect failure
detector detector

timing

81

Overview

Motivation:
Why study fault-tolerant distributed algorithms?
Where are they used?

Formalizing distributed algorithms
Basic abstractions: processes and channels
The software stack

How should we study fault-tolerant distributed algorithms?
Specifications: safety and liveness
Assumptions about processes, channels, and their failures
Example: building perfect communication links
Assumptions about timing
Depicting algorithm runs

Distributed algorithms HOWTO (summary)

82

Algorithms

Algorithms use events to communicate within a local
stack of software layers

Events have different types

Algorithms "relate" indication events to request
events

We depict algorithms using space/time diagrams

83

Space/Time Diagram

—&— ‘
% P 1) J«-&ralv\ﬂ
¢ i l K
Y / v
o’ Y)
| \ \/
[4 ! /\ ‘\’

84

Rules of Space/Time Diagrams

Process execution goes from left to right

Message arrows connect send and receive events at
processes

Message arrows must point to the right (may never point
vertically or to the left)

For perfect failure detectors: crash and suspicion can be
interpreted as send and receive of a virtual message

Rules for messages hold analogously

Similarly rules hold for eventually perfect failure detectors
which have “become perfect”

Rubber-band transformations:

As long as rules above are satisfied, space/time diagrams
can be stretched or squashed arbitrarily, resulting in
legitimate space/time diagrams

85

Overview

Motivation:
Why study fault-tolerant distributed algorithms?
Where are they used?

Formalizing distributed algorithms
Basic abstractions: processes and channels
The software stack

How should we study fault-tolerant distributed algorithms?
Specifications: safety and liveness
Assumptions about processes, channels, and their failures
Example: building perfect communication links
Assumptions about timing
Depicting algorithm runs

Distributed algorithms HOWTO (summary)

86

Distributed algorithms
HOWTO

Make assumptions explicit:
Processes with crash-stop faults
Reliable channels, fully connected topology
Perfect failure detector at every process
Define the problem:
Specify the interface operations (request, indication events)

Specify the safety and liveness properties of the problem
based on the interface

Design an algorithm:
Design software stack
Give local algorithms for each layer
Study the algorithm:
Try to argue precisely for correctness
Use space/time diagrams to play with the algorithm

87

Summary

Motivation:
Why study fault-tolerant distributed algorithms?
Where are they used?

Formalizing distributed algorithms
Basic abstractions: processes and channels
The software stack

How should we study fault-tolerant distributed algorithms?
Specifications: safety and liveness
Assumptions about processes, channels, and their failures
Example: building perfect communication links
Assumptions about timing
Depicting algorithm runs

Distributed algorithms HOWTO (summary)

88

Coming next

Study the problem of reliable broadcast in more
detall

Assume crash-stop processes with reliable channels
and a perfect failure detector

Specify reliable broadcast (different flavors)
Implement reliable broadcast (several algorithms)

89

