
62

Overview

• Motivation: 

• Why study fault-tolerant distributed algorithms?

• Where are they used?

• Formalizing distributed algorithms

• Basic abstractions: processes and channels

• The software stack

• How should we study fault-tolerant distributed algorithms?

• Specifications: safety and liveness

• Assumptions about processes, channels, and their failures

• Example: building perfect communication links

• Assumptions about timing

• Depicting algorithm runs

• Distributed algorithms HOWTO (summary)



63

Timing Assumptions

• Timing assumptions relate to 

• different processing speeds (process asynchrony) of 
processes

• different speeds of messages (channel asynchrony)

• Three basic types of systems:

• Asynchronous system

• Synchronous system

• Partially synchronous system



64

• Synchronous:

• Processing: the time it takes for a process to execute a 
step is bounded and known

• Delays: there is a known upper bound limit on the time 
it takes for a message to be received

• Clocks: the drift between a local clock and the global 
real time clock is bounded and known

• Asynchronous: no assumption

• Eventually Synchronous: the timing assumptions 
hold eventually

Timing assumptions



65

Synchronous System

• While one process takes one step, another process 
can take at most a bounded number of steps



66

Asynchrony

• While one process takes one step, another process 
can take any unbounded (but finite) number of steps



67

Partial Synchrony

• Eventually the system will be synchronous

• Timing bounds hold eventually (but you never know 
when)



68

Timing Assumptions

• Timing assumptions are often cumbersome to 
handle

• Better abstraction: failure detector

• Failure detector encapsulated timing assumptions

• Why failure detector?

• Timeouts are usually used for detecting failures



69

• A failure detector is a distributed oracle that 
provides processes with suspicions about crashed 
processes

• It is implemented using (i.e., it encapsulates) timing 
assumptions

• According to the timing assumptions, the suspicions 
can be accurate or not

Failure detection



70

• Indication event: <crash, p> 
Used to notify that process p has crashed

• Properties:

• PFD1: Eventually every process that crashes is 
permanently detected by every correct process (strong 
completeness).

• PFD2 : No process is detected by any process before it 
crashes (strong accuracy). 

Perfect failure detector



71

• Implementation: 

• (1) Processes periodically exchange heartbeat 
messages

• (2) A process sets a timeout based on worst case 
round trip of a message exchange

• (3) A process suspects another process if it timeouts 
that process

• (4) A process that delivers a message from a 
suspected process revises its suspicion and increases 
its time-out

Failure detection



72

Formal Algorithm

• upon <init> do
• timeout[1..n] = d
• initialize timer for every process q using timeout[q]
• suspected = { }

• periodically do
• for every process q do

• send <heartbeat, p> to q

• upon <timer expires for q> do
• suspected := suspected U {q}
• initialize timer for process q using timeout[q]

• upon <heartbeat, q> do
• if q in suspected then

• suspected := suspected \ {q}
• timeout[q] := timeout[q] + 1

• initialize timer for process q using timeout[q]



73

Implementation



74

Correctness

• Under what timing assumptions does the failure detector 
implementation work?

• synchronous, 

• partially synchronous, 

• asynchronous?

• Look at different cases (for two processes only):

• (1) Synchronous, where initial timeout is accurate

• (2) Synchronous with too small initial timeout

• (3) Partially synchronous with proper timeout for 
synchronous phase

• (4) Partially synchronous with too small timeout for 
synchronous phase

• (5) Asynchronous



75Case 1: Synchronous with 

proper timeout



76Case 2: Synchronous with 

improper timeout



77Case 3: Partially synchronous 

with proper timeout



78Case 4: Partially synchronous 

with improper timeout



79

Case 5: Asynchronous



80

• Perfect:

• PFD1 (Strong Completeness): Eventually, every 
process that crashes is permanently suspected by 
every correct process

• PFD2 (Strong Accuracy): No process is suspected 
before it crashes

• Eventually Perfect:

• PFD1

• Eventual Strong Accuracy: Eventually, no correct 
process is ever suspected

Failure detection



81

Summary of Assumptions
p
ro

c
e
s
s
e
s
assume reliable channels

timing

crash-

recovery

crash-

stop

no failures

synchronous perfect 

failure 

detector

eventually 

perfect failure 

detector

we are here (most of the time)



82

Overview

• Motivation: 

• Why study fault-tolerant distributed algorithms?

• Where are they used?

• Formalizing distributed algorithms

• Basic abstractions: processes and channels

• The software stack

• How should we study fault-tolerant distributed algorithms?

• Specifications: safety and liveness

• Assumptions about processes, channels, and their failures

• Example: building perfect communication links

• Assumptions about timing

• Depicting algorithm runs

• Distributed algorithms HOWTO (summary)



83

Algorithms

• Algorithms use events to communicate within a local 
stack of software layers

• Events have different types

• Algorithms "relate" indication events to request 
events

• We depict algorithms using space/time diagrams



84

Space/Time Diagram



85

Rules of Space/Time Diagrams

• Process execution goes from left to right

• Message arrows connect send and receive events at 
processes

• Message arrows must point to the right (may never point 
vertically or to the left)

• For perfect failure detectors: crash and suspicion can be 
interpreted as send and receive of a virtual message

• Rules for messages hold analogously

• Similarly rules hold for eventually perfect failure detectors 
which have “become perfect”

• Rubber-band transformations:

• As long as rules above are satisfied, space/time diagrams 
can be stretched or squashed arbitrarily, resulting in 
legitimate space/time diagrams



86

Overview

• Motivation: 

• Why study fault-tolerant distributed algorithms?

• Where are they used?

• Formalizing distributed algorithms

• Basic abstractions: processes and channels

• The software stack

• How should we study fault-tolerant distributed algorithms?

• Specifications: safety and liveness

• Assumptions about processes, channels, and their failures

• Example: building perfect communication links

• Assumptions about timing

• Depicting algorithm runs

• Distributed algorithms HOWTO (summary)



87Distributed algorithms 

HOWTO
• Make assumptions explicit:

• Processes with crash-stop faults

• Reliable channels, fully connected topology

• Perfect failure detector at every process

• Define the problem:

• Specify the interface operations (request, indication events)

• Specify the safety and liveness properties of the problem 
based on the interface

• Design an algorithm:

• Design software stack

• Give local algorithms for each layer

• Study the algorithm:

• Try to argue precisely for correctness

• Use space/time diagrams to play with the algorithm



88

Summary

• Motivation: 

• Why study fault-tolerant distributed algorithms?

• Where are they used?

• Formalizing distributed algorithms

• Basic abstractions: processes and channels

• The software stack

• How should we study fault-tolerant distributed algorithms?

• Specifications: safety and liveness

• Assumptions about processes, channels, and their failures

• Example: building perfect communication links

• Assumptions about timing

• Depicting algorithm runs

• Distributed algorithms HOWTO (summary)



89

Coming next

• Study the problem of reliable broadcast in more 
detail

• Assume crash-stop processes with reliable channels 
and a perfect failure detector

• Specify reliable broadcast (different flavors)

• Implement reliable broadcast (several algorithms)


