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Overview

 Servers and protocols
 Strings, character encoding, and memory
 Concurrency and asynchrony
 Overview of Common Lisp HTTP servers 

employing these techniques



  

(Almost) no new ideas

 Basic considerations described by Jeff Darcy:
 http://pl.atyp.us/content/tech/servers.html



  

What's a server, anyway?

 Get input
 Process input
 Write output



  

How is that different from any 
other program?

 Many clients
 High-latency connections
 Need to serve each client quickly
 Need to serve many clients simultaneously 



  

Protocols

 ”Process” part of Input-Process-Output is 
application specific

 Server is focused on I/O
 I/O is protocol-specific



  

HTTP

 1.0: One request-response per TCP connection
 1.1: Persistent connection, possibly multiple 

(pipelined) request-responses per connection 
 Comet: Server waits to respond until some 

event occurs (faking two-way communication)



  

Cache is King

 Memory access is expensive
 Memory copying is expensive



  

Character encoding

 How does your Lisp do it?
 SBCL: 32 bits per character
 read() returns vector of bytes



  

UTF-8

 Use UTF-8 everywhere
 Do everything with byte vectors (DIY character 

encoding)
 No need to copy/re-encode result of read()
 Do encoding of output at compile-time with 

(compiler) macros



  

Vectored I/O

 Access and copying is slow, so concatenation 
is slow

 System calls also slow
 Use writev() to output a list of byte vectors in 

one system call



  

Input

 Vectored input a pain, not worth it for HTTP
 Reuse input buffers!
 In some Common Lisp implementations 

(SBCL), think about declaring inline and ftype 
for FFI read() etc input functions to cut down on 
consing (small overhead but adds up)



  

Demultiplexing

 Threads
 Asynchronous IO



  

Threads

 Thread Per Connection (TPC)
 Thread blocks and sleeps when waiting for 

input
 Threads have a lot more memory overhead 

than continuations
 Passing information between threads 

expensive – synchronization and context switch
 But can (almost) pretend we're servicing one 

client at a time



  

Asynchronous I/O

 I/O syscalls don't block
 When cannot read from one client connection, 

try reading from another
 Basically coroutines
 epoll/kqueue interfaces in Linux/BSD provide 

efficient mechanism that does readiness 
notification for many fds 



  

(Not So) Asynchronous I/O

 Most AIO HTTP servers not really AIO
 Just loop polling/reading fds until a complete 

HTTP request has been received, then hand it 
off to a monolithic process_request() function

 What happens when process_request() blocks 
on DB/file access?

 What happens with more complicated protocols 
where input and processing are intertwined?



  

Handling AIO Events

 Have to resort to state machines if you don't 
have call/cc

 For true AIO, need to involve state handling 
code with application code (even for HTTP for 
things like DB access)

 Not feasible with state machines
 Trivial with first-class continuations



  

Thread pools

 Typical design – one thread demultiplexes 
(accept()), puts work in a task queue for worker 
threads

 Context switch before any work can get done
 Synchronization costs on task queue



  

Leader-Follower (LF)

 http://www.kircher-schwanninger.de/michael/publications/lf.pdf

 (let (fd)
   (loop (with-lock-held (server-lock)
               (setf fd (accept server-socket)))
            (process-connection fd)))


 On Linux and Windows, accept() is thread-safe 
– no need for taking server-lock

http://www.kircher-schwanninger.de/michael/publications/lf.pdf


  

Which one is better?

 Paul Tyma (Mailinator, Google) says thread-
per-connection handles more requests

 http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html

 For many simultaneous connections, AIO 
consumes much less memory while making 
progress on input

 In SBCL, AIO seems to win

http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html


  

Antiweb

 http://hoytech.com/antiweb/
 Async (predates both nginx and lighttpd)
 Connections managed by state machine
 Multi-process, single-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Vectored I/O (incl support for HTTP pipelining – 

send multiple responses in one writev())

http://hoytech.com/antiweb/


  

TPD2

 http://common-lisp.net/project/teepeedee2/
 Async
 Connections managed by continuations (code 

transformed with cl-cont)
 Single-process, single-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Vectored I/O

http://common-lisp.net/project/teepeedee2/


  

TPD2 goodies

 Comes with mechanism for vectored I/O 
(sendbuf)

 Comes with macros for UTF-8 encoding at 
compile-time (incl. HTML generation macros)

 Really fast on John Fremlin's benchmark – 11k 
requests/sec vs 8k r/s for nginx and embedded 
Perl (http://john.freml.in/teepeedee2-c10k)



  

Rethinking web servers

 Look at HTTP as a protocol
 Want to respond to initial request quickly
 For persistent connections, there may or may 

not be another request coming, but the 
connections themselves pile up because of 
long keepalive times

 Comet and long polling – assume huge number 
of connections sitting idle waiting for something 
to happen (ex - Web2.0 chat)



  

HTTP DOHC

 http://github.com/vsedach/HTTP-DOHC
 (Needs repository version of IOLib with my 

patches, available on IOLib mailing list)
 Hybrid TPC/AIO architecture (new)
 Single process, multi-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Not finished yet
 Not as fast as TPD2, faster than nginx



  

HTTP DOHC architecture

 LF thread pool demultiplexing accept() and 
immediately handling the initial HTTP request

 If HTTP connection is persistent, hand it off to 
second LF thread pool demultiplexing 
epoll/kqueue to handle (possible) second and 
subsequent requests

 For now the second thread pool still does TPC. 
Can make it do AIO WOLOG



  

Why separate LF pools?

 Combining multiple event sources into one 
results in an inverse leader/task-queue/worker 
pattern

 Planning to look at SEDA for ideas on moving 
threads around between pools to handle load



  

HTTP DOHC TODO

 Plan to make interface as compatible as 
reasonable with Hunchentoot 1.0

 Planned third LF thread pool to demultiplex 
synthetic server-side events to handle Comet 
requests

 File handling
 SSL
 Gzip encoding



  

Conclusions

 Good server design depends on protocol
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