

Developing high-performance network servers
in Lisp

Vladimir Sedach <vsedach@gmail.com>

Overview

 Servers and protocols
 Strings, character encoding, and memory
 Concurrency and asynchrony
 Overview of Common Lisp HTTP servers

employing these techniques

(Almost) no new ideas

 Basic considerations described by Jeff Darcy:
 http://pl.atyp.us/content/tech/servers.html

What's a server, anyway?

 Get input
 Process input
 Write output

How is that different from any
other program?

 Many clients
 High-latency connections
 Need to serve each client quickly
 Need to serve many clients simultaneously

Protocols

 ”Process” part of Input-Process-Output is
application specific

 Server is focused on I/O
 I/O is protocol-specific

HTTP

 1.0: One request-response per TCP connection
 1.1: Persistent connection, possibly multiple

(pipelined) request-responses per connection
 Comet: Server waits to respond until some

event occurs (faking two-way communication)

Cache is King

 Memory access is expensive
 Memory copying is expensive

Character encoding

 How does your Lisp do it?
 SBCL: 32 bits per character
 read() returns vector of bytes

UTF-8

 Use UTF-8 everywhere
 Do everything with byte vectors (DIY character

encoding)
 No need to copy/re-encode result of read()
 Do encoding of output at compile-time with

(compiler) macros

Vectored I/O

 Access and copying is slow, so concatenation
is slow

 System calls also slow
 Use writev() to output a list of byte vectors in

one system call

Input

 Vectored input a pain, not worth it for HTTP
 Reuse input buffers!
 In some Common Lisp implementations

(SBCL), think about declaring inline and ftype
for FFI read() etc input functions to cut down on
consing (small overhead but adds up)

Demultiplexing

 Threads
 Asynchronous IO

Threads

 Thread Per Connection (TPC)
 Thread blocks and sleeps when waiting for

input
 Threads have a lot more memory overhead

than continuations
 Passing information between threads

expensive – synchronization and context switch
 But can (almost) pretend we're servicing one

client at a time

Asynchronous I/O

 I/O syscalls don't block
 When cannot read from one client connection,

try reading from another
 Basically coroutines
 epoll/kqueue interfaces in Linux/BSD provide

efficient mechanism that does readiness
notification for many fds

(Not So) Asynchronous I/O

 Most AIO HTTP servers not really AIO
 Just loop polling/reading fds until a complete

HTTP request has been received, then hand it
off to a monolithic process_request() function

 What happens when process_request() blocks
on DB/file access?

 What happens with more complicated protocols
where input and processing are intertwined?

Handling AIO Events

 Have to resort to state machines if you don't
have call/cc

 For true AIO, need to involve state handling
code with application code (even for HTTP for
things like DB access)

 Not feasible with state machines
 Trivial with first-class continuations

Thread pools

 Typical design – one thread demultiplexes
(accept()), puts work in a task queue for worker
threads

 Context switch before any work can get done
 Synchronization costs on task queue

Leader-Follower (LF)

 http://www.kircher-schwanninger.de/michael/publications/lf.pdf

 (let (fd)
 (loop (with-lock-held (server-lock)
 (setf fd (accept server-socket)))
 (process-connection fd)))


 On Linux and Windows, accept() is thread-safe
– no need for taking server-lock

http://www.kircher-schwanninger.de/michael/publications/lf.pdf

Which one is better?

 Paul Tyma (Mailinator, Google) says thread-
per-connection handles more requests

 http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html

 For many simultaneous connections, AIO
consumes much less memory while making
progress on input

 In SBCL, AIO seems to win

http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html

Antiweb

 http://hoytech.com/antiweb/
 Async (predates both nginx and lighttpd)
 Connections managed by state machine
 Multi-process, single-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Vectored I/O (incl support for HTTP pipelining –

send multiple responses in one writev())

http://hoytech.com/antiweb/

TPD2

 http://common-lisp.net/project/teepeedee2/
 Async
 Connections managed by continuations (code

transformed with cl-cont)
 Single-process, single-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Vectored I/O

http://common-lisp.net/project/teepeedee2/

TPD2 goodies

 Comes with mechanism for vectored I/O
(sendbuf)

 Comes with macros for UTF-8 encoding at
compile-time (incl. HTML generation macros)

 Really fast on John Fremlin's benchmark – 11k
requests/sec vs 8k r/s for nginx and embedded
Perl (http://john.freml.in/teepeedee2-c10k)

Rethinking web servers

 Look at HTTP as a protocol
 Want to respond to initial request quickly
 For persistent connections, there may or may

not be another request coming, but the
connections themselves pile up because of
long keepalive times

 Comet and long polling – assume huge number
of connections sitting idle waiting for something
to happen (ex - Web2.0 chat)

HTTP DOHC

 http://github.com/vsedach/HTTP-DOHC
 (Needs repository version of IOLib with my

patches, available on IOLib mailing list)
 Hybrid TPC/AIO architecture (new)
 Single process, multi-threaded
 Doesn't use Lisp strings (UTF-8 in byte vectors)
 Not finished yet
 Not as fast as TPD2, faster than nginx

HTTP DOHC architecture

 LF thread pool demultiplexing accept() and
immediately handling the initial HTTP request

 If HTTP connection is persistent, hand it off to
second LF thread pool demultiplexing
epoll/kqueue to handle (possible) second and
subsequent requests

 For now the second thread pool still does TPC.
Can make it do AIO WOLOG

Why separate LF pools?

 Combining multiple event sources into one
results in an inverse leader/task-queue/worker
pattern

 Planning to look at SEDA for ideas on moving
threads around between pools to handle load

HTTP DOHC TODO

 Plan to make interface as compatible as
reasonable with Hunchentoot 1.0

 Planned third LF thread pool to demultiplex
synthetic server-side events to handle Comet
requests

 File handling
 SSL
 Gzip encoding

Conclusions

 Good server design depends on protocol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

