
Continuations continued:

the REST of the computation

Anton van Straaten

appsolutions.com

1

REST - The 10-second overview

"the name given to the architecture of the World Wide Web by Roy
Fielding." -- rest-discuss

Following REST principles leads to systems with desirable
properties, like scalability

Some web systems are more RESTful than others

RESTful systems avoid maintaining state on the server between
requests

2

First-class Continuations

Simplifies writing of web applications

Write web applications in direct style - no need to ’invert control’

Increasingly popular - in part due to prior LL workshops

Benefits of continuations largely dependent on their ability to
maintain application state on the server between requests

(ignore possibility of sending state to the client for now)

3

REST vs. Continuations

On the server between requests:

REST avoids keeping state

Continuations keep state

Bam! Conflict?

"Trying to use continuations for a web application just means you
don’t really understand what the web is for" -- anonymous

4

Why does it matter?

REST guidelines well-proven - ignore at own risk

Continuation-based web systems increasingly popular

Application spaces overlap

Worth understanding apparent conflict

Understand where first-class continuation use might be problematic

Broaden the dialogue about continuations in practical contexts

Get new ideas!

5

REST

Again: "the name given to the architecture of the World Wide Web
by Roy Fielding."

Some context: "The first edition of REST was developed between
October 1994 and August 1995, primarily as a means for
communicating Web concepts as we wrote the HTTP/1.0
specification and the initial HTTP/1.1 proposal."

"The name ’Representational State Transfer’ is intended to evoke
an image of how a well-designed Web application behaves: a
network of web pages (a virtual state-machine), where the user
progresses through the application by selecting links (state
transitions), resulting in the next page (representing the next state
of the application) being transferred to the user and rendered for
their use."

6

Major REST components

Data elements

Resource : the intended conceptual target of a hypertext
reference

Resource identifier : URL, URN

Representation : XML or HTML document, JPEG image

Components

origin server : Apache httpd, Microsoft IIS

user agents: Mozilla, IE, etc.

other client programs

gateways, proxies, and caches

7

REST Benefits

"...an architecture that separates server implementation from the
client’s perception of resources, scales well with large numbers of
clients, enables transfer of data in streams of unlimited size and
type, supports intermediaries (proxies and gateways) as data
transformation and caching components, and concentrates the
application state within the user agent components."

8

REST Caveats

"REST is not intended to capture all possible uses of the Web
protocol standards."

"REST isn’t supposed to be a baseball bat; it is supposed to be a
guide to understanding the design trade-offs, why they were made,
and what properties we lose when an implementation violates
them."

9

Context for this talk

Focusing on a particular area of REST of interest w.r.t.
continuations: the "statelessness" constraint

REST servers avoid maintaining state between requests

Focus on the WWW as a concrete example, although REST is
theoretically a broader model.

REST describes "distributed hypermedia systems". Talk focuses
on distributed applications, with an expedient focus on web
applications.

10

Continuation-based web systems

Lisp - ViaWeb, UnCommon Web

Scheme - PLT, SISC, Chicken, PS3I

Smalltalk - Seaside

Javascript/Java - Apache Cocoon

Python - Impostor

Ruby - Borges

Hacks

Java - ATCT, RIFE

Perl: Continuity, Contize, Coro

11

Continuation accolade #1

"Wow!

"Seaside makes writing web apps startlingly simple and
straightforward. In comparison, web app frameworks in the Java
world, such as JSP or Struts, and even Ruby on Rails look like
dinosaurs."

 - Nat Pryce, on Avi Bryant’s blog

12

Continuation accolade #2

"Whoever invented the flow, whoever implemented it here, and had
anything to do with it and brought it to Cocoon is a F#$%ING
GENIOUS.

"I shall erect an altar in my fireplace and burn incense to his holiness
every single day, preaching for my soul, to be, at one day, of
comparable intelligence with his...

"PS Can you tell that I started using it? And that it did beat the crap
out of me? Now I won’t be able to design any web application without
it! And that’s the beautiful part of it!:-)"

 - Pier Fumagalli on xml-cocoon-dev

13

REST & abstract continuations

Forget first-class continuations -

Do abstract continuations apply to REST?

If not, continuations as an abstraction are suspect.

Is something else needed - pi calculus?

Would be unfortunate:

Continuations have gained mindshare

Already present in real tools

14

Analyzing REST control flow

Identify the abstract continuations in REST

Figure out whether reifying them is of any use

15

Abstract case is obvious

Every request involves continuations

Request is a continuation in action

Server sends continuation(s) to client in every representation

Example of continuation embedded in code sent to client:

Widget

Simple, but key concept

16

Addresses alone are not enough

Consider the URI as an address to ’goto’

What about the continuation’s state?

Stored in HTML forms:

<form action="http://www.example.com/widget" method="POST">
<input type="text" name="item-no" /> <input type="text"
name="description" /> <input type="hidden" name="internal"
value="relevant stuff" /> ...</form>

17

Continuations in REST: Case #1

Continuation-based frameworks already support these

They synthesize URIs for embedding in representations

(send-suspend

 (lambda (k-url)

 (quasiquote

 (html

 (body

 (a (@ (href (unquote k-url)))))))))

18

Analysis of Case #1

Continuation is serialized in representation

But not a value of type ’continuation’ in host language

(could be considered such in HTML)

Conceptualizing as continuation is useful

Better abstraction from underlying mechanism

19

Case #2:

Serialize complex continuations to client

Serialize complex server continuation, send to client

Quite viable in some situations; been done

Size of continuations may be an issue

Satisfies REST:

"each request from client to server must contain all of the
information necessary to understand the request, and cannot
take advantage of any stored context on the server. Session
state is therefore kept entirely on the client."

20

First-class closures as continuations

Paul Graham used in ViaWeb

Continuations capture lexical context, just like closures.

Difference:

"A closure needs to retain information about lexical variables,
but not return-address information. A continuation needs both."
 -- Guy Steele, ll-discuss

To fake continuations with closures, use CPS

Last operation in closure: invoke the next operation

21

Case #3: send/suspend/dispatch

Idiom & function by Pete Hopkins

Supports providing multiple URIs to client

Each URI associated with closure

See also Waterken’s Web Calculus

Real, REST-compatible, first-class continuations

But faked via closures - local CPS style

22

send/suspend/dispatch example

(define dialog/ask

 (lambda (title question)

 (send/suspend/dispatch

 (lambda (embed/url)

 (gen-web-page

 title

 (quasiquote

 ((unquote question)

 (p

 (a ((href (unquote

 (embed/url (lambda _ #t)))))

 "Yes")

 (a ((href (unquote

 (embed/url (lambda _ #f)))))

 "No")))))))))

-- Pete Hopkins

23

Multiple control views of a distributed system

(informal)

Server control flow

Client control flow

Client/server control flow

Client invokes function on server

Function springs to life & executes

Terminates with result and continuation(s)

24

One program, or many programs?

Can restart server, and clients can continue where they left off

No surprise - REST continuations in action

Continuations (URIs identifying resources) glue application
components together

25

Important goal of REST style

Strip continuations down to simple URIs, or URI + HTML form

Let client manage these continuations

Applications become a state machine laid out as a web of
interconnected resources

"Flow" of the application determined by, and stored in, user
interface

(actually stored in representations)

26

Real applications may need more

"Sessions" are allowed in REST, subject to constraints

Multi-step workflows a classic case

27

Can we keep continuations on the server?

(between requests)

Continuations have state, so answer is no!

"communication must be stateless in nature ... such that each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server."

28

Can we keep continuations on the server?

(between requests)

Continuations have state, so answer is no!

"communication must be stateless in nature ... such that each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server."

Misleading!

29

Can we keep continuations on the server?

(between requests)

Continuations have state, so answer is no!

"communication must be stateless in nature ... such that each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server."

Misleading!

REST requests exploit stored context on the server all the time

30

Can we keep continuations on the server?

(between requests)

Continuations have state, so answer is no!

"communication must be stateless in nature ... such that each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server."

Misleading!

REST requests exploit stored context on the server all the time

Stored context is called "resources"

31

REST workflow

Preferred REST approach for workflow is to accumulate state in
resources

Workflow involves creating new resources, and mutating existing
ones

32

So: can continuations be resources?

"Any concept that might be the target of an author’s hypertext
reference must fit within the definition of a resource."

33

So: can continuations be resources?

"Any concept that might be the target of an author’s hypertext
reference must fit within the definition of a resource."

In continuation-based web systems, continuations are the target of
a hypertext reference

34

So: can continuations be resources?

"Any concept that might be the target of an author’s hypertext
reference must fit within the definition of a resource."

In continuation-based web systems, continuations are the target of
a hypertext reference

Typical example (PLT):

http://www.example.com/widget.scm;id10*k1-877162241

35

So, are continuations resources?

As targets of hypertext reference, they qualify by definition

36

So, are continuations resources?

As targets of hypertext reference, they qualify by definition

QED.

37

So, are continuations resources?

As targets of hypertext reference, they qualify by definition

QED.

OK, too cute!

38

So, are continuations resources?

As targets of hypertext reference, they qualify by definition

QED.

OK, too cute!

REST imposes other constraints.

39

Why aren’t continuations resources?

Often ephemeral - don’t survive session

40

Why aren’t continuations resources?

Often ephemeral - don’t survive session

"Easy" solution - persistent continuations

41

Why aren’t continuations resources?

Often ephemeral - don’t survive session

"Easy" solution - persistent continuations

But other issues, too

E.g. continuations tend to be opaque

42

Why aren’t continuations resources?

Often ephemeral - don’t survive session

"Easy" solution - persistent continuations

But other issues, too

E.g. continuations tend to be opaque

Not a good primary resource format

43

So what are they good for?

Need a little leap

44

So what are they good for?

Need a little leap

Snapshot program state prior to generation of representation

Act as cache for the representation of a resource

Accessed via ordinary URI

Cache manager uses continuation if present

Otherwise, reifies resource

45

Why not just cache representation?

Caching representations is an important aspect of REST

Not sufficient in complex workflow scenario

Workflow steps may need data not present in resource
representation

Resource representation may not be primary source used by
application logic

Re-reification of resources at each step inefficient

Slower user experience between pages, heavier server load

46

Case #4: Continuations as cached representation

generators

Satisfies most REST constraints

Conceive as:

Resource state

Pointer to code which generates representation

47

Cached representation generator example

(define (widget)

 (let* ((request (send/suspend widget-form))

 (item-no (get-value request ’item-no))

 (qty (get-value request ’description))

 (res-id (cache-resource-here)))

 (widget-view res-id item-no description)))

48

Low-level framework API: cache-resource-here

(define (cache-resource-here)

 (let ((res-id #f))

 (resume-kont

 (call/cc

 (lambda (k)

 (set! res-id (cache-resource k))

 (redirect-to

 (make-kont-uri

 (base-uri (servlet-context-url (ctx)))

 res-id)

 301))))

 res-id))

49

Higher-level example

(define (widget)

 (let ((request (send/suspend widget-form)))

 (let-resource ((widg (make-widget request)))

 (purchase-order-view widg))))

50

Back to high-level view

Web application as coroutines

Good model, but too simplistic in reality

Clients and servers don’t always just wait for each other

Support client operations while server busy

51

Final example before I can REST

Example: long-running report, REST style

Client sends request to server

Server queues request, responds with resource id

Later, client requests resource using id

Server reifies resource, generates representation, sends to client

52

Case #5: representation generator redux

Server creates stub resource, returns id to client

Once final resource has been generated, server snapshots
continuation

uses cache-resource-here

When client requests resource:

Server activates cached continuation

Response is immediate

53

Concerns

Persistence

Scalability

Efficiency

Cache coherence

Framework can help

Workflows have well-defined dependencies

Server complexity - slightly suspect from REST perspective

Then again, cache management is explicit part of REST

54

Benefit

Cleanly addresses known REST tradeoff:

"Like most architectural choices, the stateless constraint reflects a
design trade-off. The disadvantage is that it may decrease network
performance by increasing the repetitive data (per-interaction
overhead) sent in a series of requests, since that data cannot be
left on the server in a shared context." -- REST 5.1.3

Address this not by saving "bad" inter-request state, but by caching
resource state - more RESTful

55

Lessons - Conceptual

Continuations are a good abstract model for web applications,
REST or not

Recognizing the abstract continuations in distributed systems can
clarify thinking about control flow, REST applications included

Supports abstraction of simple REST-style continuations from
details of URIs

56

Lessons - Language Design

Framework designers need building blocks

Continuations are an important one

Being forced to hack these things in is bad, ’mkay?

Cases in point: Java, Perl

Frameworks need first-class continuations (or equivalent) at some
level

Desired qualities

Persistable

Efficient

Languages must provide these features

57

Lessons - REST

Distributed applications are complex (duh)

REST is a response to this complexity

Some constraints are fundamental to distributed applications

Others are a response to existing technology

Tradeoff of some server complexity for continuation features may
be worthwhile

Plenty of precedent with server-side caching - e.g. memcached,
JCS

Storage is cheap

58

Time to give the puns a REST

Thank you!

59

