zenika

ARCHITECTURE INFORMATIQUE

Using GWT Generators for
databinding

An introduction to GWT Generators

Zenika (www.zenika.com)
08/01/2007
by Jean-Philippe Dournel (jean-philippe.dournel@zenika.fr)

mailto:jean-philippe.dournel@zenika.fr
http://www.zenika.com/

M zenika

ARCHITECTURE INFORMATIQUE

Preamble

The purpose of this tutorial is to explain how Deferred Binding works in GWT and the use of
the Generator class to create classes dynamically. The example we will use thoughout this
tutorial is the creation of an utility class which provides access to the properties of an object
using the field names. This mechanism will prove very useful for solving recurrent problems
like connecting a model to a GUI (also know as databinding).

Deferred Binding

In Java, reflection is a very powerful mechanism. Suppose we have two different classes,
Employee and Visitor, which are subclasses of Person and we want the object person to
indicate an instance of Employee or Visitor according to the context.

In Java we would use reflection like this:

// status contains “Employee” or “Visitor”
String status = getStatus();
Person person (Person) Class.forName (status) .newInstance();

Thus, the instance held by the object person is dynamically selected according to the character
string status.

For several reasons, reflection isn't possible with GWT. The first one deal with code
optimization: only methods and classes used in the application are translated into Javascript
during compilation. The other reason is that it is not possible to load a class dynamically in
Javascript.

To compensate this lack, GWT has Deferred Binding which consists in running the insertion
of the required class during the compilation instead of the runtime. The creation of an instance
is done thanks to the operation GWT.create (MyClass.class).

It is however not possible to call a class using character strings (such as “MyClass”) with
GWT, unlike Java's reflection. The name of the class must be described in a literal manner
(MyClass.class). Now let's explain the difference between GWT.create (Classe.class) and new
Class().

The difference lies in the compiling process. The new Class() call is directly translated into
Javascript, whereas the GWT.create() call passes through the Generator which specifies which
class must be instantiated.

zemk

ARCHITECTURE INFORMATIQUE

Presentation of the example

To explain how to use the Generator class, let us see the following example: we have a Person
business class and we would like to be able to access its properties using their names.

In Java, we would use reflection with the following code:

private String getAttribute (Object object, String property) {
Class objectClass = objet.getClass();
// We suppose that to the property “property” corresponds the getter
// getProperty ()
String getterName = "get" + property.substring(0, 1).toUpperCase ()
+ property.substring(l);
Method method = objectClass.getMethod (getterName, null);
String result = (String) methode.invoke (object, null);
return result;

With GWT, we cannot use reflection. To implement the method getAttribute, we have to
dynamically create a class which will be in charge of wrapping the business object (called by
GWT.create ()) and which will implement the Wrapper interface.

public interface Wrapper ({
// the content object represents the object wrapped by the wrapper
public void setContent (content Object);
Object public getContent () ;
public String getAttribute(String attr);
public void setAttribute (String attr, String property):;

Here is the class we want to wrap:

zenika

ARCHITECTURE INFORMATIGUE
public class Person {

private String name;
private String firstName;

public Person () {
}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public String getFirstName () {
return firstName;

}

public void setFirstName (String firstName) ({
this.prenom = firstName;

}

And here is the class we want to obtain by calling GWT.create (Person.class):

public class PersonWrapper implements Wrapper {
private Personne content;

public void setContent (Object content) {
this.content = (Person) content;

}

public Object getContent () {
return this.content;

}

public String getAttribute (String attr) {
if (attr.equals (”"name”)) {
return content.getName () ;
}
if (attr.equals (”“firstName”)) {
return content.getFirstName () ;
}

return null;

public void setAttribute(String attr, String property) {

if (attr.equals (”"name”)) {
this.content.setName (property) ;
} else if (attr.equals(”firstName”)) {

this.content.setFirstName (property) ;

}

M zenika

ARCHITECTURE INFORMATIQUE

Use a Custom Generator

When the method GWT.create (MyClass.class) is called, GWT uses the default generator
which returns the name of the class to instantiate (MyClass by default). To make GWT use
another generator, it is mandatory to add the following lines in the module XML
configuration file.

<generate-with class="com.zenika.tutorial.rebind.WrapperGenerator" >
<when-type-assignable class="
com.zenika.tutorial.gwt.client.BusinessObject" />
</generate-with>

This piece of code makes GWT use the WrapperGenerator class for any call to an object
which implements the BusinessObject interface. The BusinessObject interface is empty and is
only used to identify classes which have to pass through the WrapperGenerator. The
technique is slightly intrusive.

The WrapperGenerator class extends the abstract class Generator of GWT (contained in gwt-
dev-‘OS’ jar) and is located by convention in a package .rebind apart from the GWT module.
This is normal since this class won't be compiled and won't provide a RPC service.

package com.zenika.tutorial.rebind;

import com.google.gwt.core.ext. Generator;

import com.google.gwt.core.ext.GeneratorContext;

import com.google.gwt.core.ext.TreelLogger;

import com.google.gwt.core.ext.UnableToCompleteException;

/**

* Method called at the time of the sequence of Deferred Binding initiated by

* the GWT.create call ().

* Return the name of the class to be intanciated.

*/

public class WrapperGenerator extends Generator ({

public String generate (Treelogger logger, GeneratorContext context,
String typeClass) throws UnableToCompleteException {
WrapperCreator binder = new WrapperCreator (logger, context,
typeClass) ;

String className = binder.createWrapper () ;
return className;

The generate method requires different parameters:

« TreeLogger which is used to log messages
» GeneratorContext which manages metadata
- typeClass which is the name of the class passed as a parameter of GWT.create()

M zenika

ARCHITECTURE INFORMATIQUE

It returns the name of the class to instantiate. Here, we want it to return PersonWrapper
instead of Person. This PersonWrapper class does not exist yet and will be created
dynamically based on the class Person by the WrapperCreator class.

Generate a Class dynamically

The last stage is the creation of the wrapper WrapperCreator. We will describe this operation
in details.

The parameters passed to the method 'generate' are retained as fields (done inside the
constructor). The TypeOracle object extracted from GeneratorContext is a GWT class which
provides access data (class name, methods, method parameters, etc) of the class used as
parameter of the GWT.create method () (here the class Person), in a very similar fashion to
Java's reflection.

public WrapperCreator (TreelLogger logger, GeneratorContext context,
String typeName) {
this.logger = logger;
this.context = context;
this.typeName = typeName;
this.typeOracle = context.getTypeOracle() ;

Then the method createWrapper is called by WrapperGenerator. Using the typeOracle, it
retrieves the name of the class required and calls the method getSourceWriter ().

public String createWrapper () {
try {
JClassType classType = typeOracle.getType (typeName) ;
SourceWriter source = getSourceWriter (classType):;

}
public SourceWriter getSourceWriter (JClassType classType) {

String packageName = classType.getPackage () .getName ()
String simpleName = classType.getSimpleSourceName () + "Wrapper";
ClassSourceFileComposerFactory composer =
new ClassSourceFileComposerFactory (packageName, simpleName) ;
composer
.addImplementedInterface ("com.zenika.tutorial.gwt.client.Wrapper") ;
PrintWriter printWriter = context.tryCreate (logger, packageName,
simpleName) ;
if (printWriter == null) ({
return null;
} else {
SourceWriter sw = composer.createSourceWriter (context,
printWriter) ;
return sw;

M zenika

ARCHITECTURE INFORMATIQUE

SourceWriter manages the textual flow of the class to be generated. It has a similar behavior
to FileWriter except that it adds indent management. The SourceWriter returned contains the
package declarations, the class name and the implemented interfaces. The only thing left is
the actual class body. For that purpose, we use the oracle to generate the methods getAttribute
and setAttribute according to the properties of the Person object. Here is the snippet which
creates the method getAttribute (the complete code of the class is also available, see
downloads).

JMethod[] methods = classType.getMethods() ;
for (int 1 = 0; i1 < methods ; i++) {
String methodName = methods[i].getName () ;
JParameter[] methodParameters = methods [i].getParameters ();
JType returnType = methods [i].getReturnType();
if (methodName.startsWith ("get") & methodParameters.length == 0) {
source.println("if (attr.equals (\""
+ methodName.substring(3) .toLowerCase ()

+"\M))) (M)
source.indent () ;
source.println("return content." + methodName + " ();");

source.outdent () ;
source.print ("} else");

}

source.println("{");
source.indent () ;
source.println("return null;");
source.outdent () ;
source.println("}");

Use the wrapper

Now, to use the wrapper you only have to do this:

Wrapper wrapper = (Wrapper) GWT.create (Personne.class);
wrapper.setContent (person) ;

And you can access the data contained in person with the function getAttribute of the wrapper
(for example, getAttribute (“name”)).

Here is a more concrete use example :

zemk

ARCHITECTURE INFORMATIQUE

// Creation of the model, a simple pojo normally recovered a RPC service
final Person person = new Person ("Robert", "Charlebois");

// Creation of the wrapper which allow data binding

Wrapper wrapper = (Wrapper) GWT.create (Person.class);

// wrap the model

wrapper.setContent (person) ;

// bind the name and the first name with two textboxes

RootPanel.get () .add (Binder.bind (new TextBox (), wrapper, "firstName"));
RootPanel.get () .add (Binder.bind (new TextBox (), wrapper, "name"));
Button button = new Button ("Inspect the new values of the model");
button.addClickListener (new ClickListener () {

public void onClick (Widget sender) {
// test to see if the IHM reflect well the new model values
Window.alert (personne.getFirstName () +" "+personne.getName ()) ;
}

1)
RootPanel.get () .add (button) ;

The End...

We provided a zip file containing the source code of the wrapper generator and a databinding
example. You can download it here: GWT_Binding

I particularly thank Ray Cromwell who was one of the first people to document Generator on
his blog http://timepedia.blogspot.com/.

This tutorial is an introduction to a more complete tutorial centered on databinding. We will
see in particular how to create a Bind class which will deal with the creation of the wrapper in
a completely generic way and the dynamic creation of Validators.

http://www.zenika.com/blog/wp-content/uploads/2007/07/tutorial_gwt_binding.zip
http://timepedia.blogspot.com/
http://www.zenika.com/blog/wp-content/uploads/2007/07/tutorial_gwt_binding.zip
http://www.zenika.com/blog/wp-content/uploads/2007/07/tutorial_gwt_binding.zip

	Using GWT Generators for databinding

